Display options
Share it on

Cell Death Discov. 2021 May 18;7(1):114. doi: 10.1038/s41420-021-00487-z.

Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells.

Cell death discovery

Xi Chen, Elisa Saccon, K Sofia Appelberg, Flora Mikaeloff, Jimmy Esneider Rodriguez, Beatriz Sá Vinhas, Teresa Frisan, Ákos Végvári, Ali Mirazimi, Ujjwal Neogi, Soham Gupta

Affiliations

  1. Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden.
  2. Public Health Agency of Sweden, Solna, Sweden.
  3. Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
  4. Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
  5. Manipal Center for Virus Research, Manipal University, Manipal, India.
  6. Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden. [email protected].

PMID: 34006825 PMCID: PMC8129603 DOI: 10.1038/s41420-021-00487-z

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has caused a global health emergency. A key feature of COVID-19 is dysregulated interferon-response. Type-I interferon (IFN-I) is one of the earliest antiviral innate immune responses following viral infection and plays a significant role in the pathogenesis of SARS-CoV-2. In this study, using a proteomics-based approach, we identified that SARS-CoV-2 infection induces delayed and dysregulated IFN-I signaling in Huh7 cells. We demonstrate that SARS-CoV-2 is able to inhibit RIG-I mediated IFN-β production. Our results also confirm the recent findings that IFN-I pretreatment is able to reduce the susceptibility of Huh7 cells to SARS-CoV-2, but not post-treatment. Moreover, senescent Huh7 cells, in spite of showing accentuated IFN-I response were more susceptible to SARS-CoV-2 infection, and the virus effectively inhibited IFIT1 in these cells. Finally, proteomic comparison between SARS-CoV-2, SARS-CoV, and MERS-CoV revealed a distinct differential regulatory signature of interferon-related proteins emphasizing that therapeutic strategies based on observations in SARS-CoV and MERS-CoV should be used with caution. Our findings provide a better understanding of SARS-CoV-2 regulation of cellular interferon response and a perspective on its use as a treatment. Investigation of different interferon-stimulated genes and their role in the inhibition of SARS-CoV-2 pathogenesis may direct novel antiviral strategies.

References

  1. Cancers (Basel). 2020 Mar 29;12(4): - PubMed
  2. J Clin Invest. 2019 Jul 29;129(9):3625-3639 - PubMed
  3. Infez Med. 2020 Ahead of print Jun 1;28(2):174-184 - PubMed
  4. Cell Host Microbe. 2016 Feb 10;19(2):181-93 - PubMed
  5. Emerg Microbes Infect. 2020 Dec;9(1):1748-1760 - PubMed
  6. Virology. 2015 May;479-480:110-21 - PubMed
  7. J Biol Chem. 2020 Oct 9;295(41):13958-13964 - PubMed
  8. Immune Netw. 2016 Oct;16(5):286-295 - PubMed
  9. Cell Rep. 2020 Oct 6;33(1):108234 - PubMed
  10. Nat Rev Immunol. 2015 Feb;15(2):87-103 - PubMed
  11. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28344-28354 - PubMed
  12. Cold Spring Harb Perspect Med. 2016 Mar 01;6(3):a026104 - PubMed
  13. Euro Surveill. 2020 Jan;25(3): - PubMed
  14. Mol Syst Biol. 2016 Jan 20;12(1):855 - PubMed
  15. JAMA. 2020 Mar 17;323(11):1061-1069 - PubMed
  16. J Virol. 2020 Nov 9;94(23): - PubMed
  17. Eur Respir J. 2020 Dec 24;56(6): - PubMed
  18. Clin Infect Dis. 2021 May 18;72(10):e466-e475 - PubMed
  19. Nat Rev Immunol. 2020 Jul;20(7):397-398 - PubMed
  20. Oncol Lett. 2018 Nov;16(5):6608-6614 - PubMed
  21. Nature. 2020 Nov;587(7835):657-662 - PubMed
  22. FEBS Lett. 2009 Dec 17;583(24):3966-73 - PubMed
  23. Biochem Pharmacol. 2014 Aug 1;90(3):265-75 - PubMed
  24. Adv Virus Res. 2016;96:219-243 - PubMed
  25. Viruses. 2016 Jun 02;8(6): - PubMed
  26. PLoS Pathog. 2019 Nov 11;15(11):e1008146 - PubMed
  27. Virol J. 2007 Sep 18;4:89 - PubMed
  28. Nat Rev Microbiol. 2018 Jul;16(7):423-439 - PubMed
  29. Sci Rep. 2016 Aug 22;6:31758 - PubMed
  30. Signal Transduct Target Ther. 2020 Jun 10;5(1):89 - PubMed
  31. Front Immunol. 2020 Aug 14;11:2033 - PubMed
  32. Nat Cell Biol. 2017 Sep;19(9):1061-1070 - PubMed
  33. J Virol. 2014 May;88(9):4908-20 - PubMed
  34. N Engl J Med. 2020 Dec 31;383(27):2684-2686 - PubMed
  35. Nat Rev Immunol. 2014 Jan;14(1):36-49 - PubMed
  36. Nat Rev Immunol. 2020 Oct;20(10):585-586 - PubMed
  37. J Mol Biol. 2019 Oct 4;431(21):4203-4216 - PubMed
  38. Cell. 2020 May 28;181(5):1036-1045.e9 - PubMed
  39. mSphere. 2017 Nov 15;2(6): - PubMed
  40. Nat Commun. 2020 Jul 30;11(1):3810 - PubMed
  41. Lancet Respir Med. 2021 Feb;9(2):196-206 - PubMed
  42. Nature. 2020 Jul;583(7816):459-468 - PubMed
  43. iScience. 2021 May 21;24(5):102420 - PubMed
  44. Science. 2020 Aug 7;369(6504):718-724 - PubMed
  45. Annu Rev Immunol. 2014;32:513-45 - PubMed
  46. J Virol. 2007 Sep;81(18):9812-24 - PubMed
  47. Front Microbiol. 2020 Nov 25;11:593857 - PubMed

Publication Types

Grant support