Display options
Share it on

Diagnostics (Basel). 2021 Apr 15;11(4). doi: 10.3390/diagnostics11040705.

Prospects of Intraoperative Multimodal OCT Application in Patients with Acute Mesenteric Ischemia.

Diagnostics (Basel, Switzerland)

Elena Kiseleva, Maxim Ryabkov, Mikhail Baleev, Evgeniya Bederina, Pavel Shilyagin, Alexander Moiseev, Vladimir Beschastnov, Ivan Romanov, Grigory Gelikonov, Natalia Gladkova

Affiliations

  1. Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia.
  2. Thermal Injury Group, University Clinic, Privolzhsky Research Medical University, 18/1 Verkhnevolzhskaya Naberezhnaja, 603155 Nizhny Novgorod, Russia.
  3. City Clinical Hospital No.30, 85A Berezovskaya St., 605157 Nizhny Novgorod, Russia.
  4. The Department of Pathology, University Clinic, Privolzhsky Research Medical University, 18/1 Verkhnevolzhskaya Naberezhnaja, 603155 Nizhny Novgorod, Russia.
  5. Institute of Applied Physics of the RAS, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia.

PMID: 33920827 PMCID: PMC8071199 DOI: 10.3390/diagnostics11040705

Abstract

INTRODUCTION: Despite the introduction of increasingly multifaceted diagnostic techniques and the general advances in emergency abdominal and vascular surgery, the outcome of treatment of patients with acute impaired intestinal circulation remains unsatisfactory. The non-invasive and high-resolution technique of optical coherence tomography (OCT) can be used intraoperatively to assess intestine viability and associated conditions that frequently emerge under conditions of impaired blood circulation. This study aims to demonstrate the effectiveness of multimodal (MM) OCT for intraoperative diagnostics of both the microstructure (cross-polarization OCT mode) and microcirculation (OCT angiography mode) of the small intestine wall in patients with acute mesenteric ischemia (AMI).

METHODS AND PARTICIPANTS: A total of 18 patients were enrolled in the study. Nine of them suffered from AMI in segments II-III of the superior mesenteric artery (AMI group), whereby the ischemic segments of the intestine were examined. Nine others were operated on for adenocarcinoma of the colon (control group), thus allowing areas of their normal small intestine to be examined for comparison. Data on the microstructure and microcirculation in the walls of the small intestine were obtained intraoperatively from the side of the serous membrane using the MM OCT system (IAP RAS, Russia) before bowel resection. The MM OCT data were compared with the results of histological examination.

RESULTS: The study finds that MM OCT visualized the damage to serosa, muscularis externa, and blood vessels localized in these layers in 100% of AMI cases. It also visualized the submucosa in 33.3% of AMI cases. The MM OCT images of non-ischemic (control group), viable ischemic, and necrotic small intestines (AMI group) differed significantly across stratification of the distinguishable layers, the severity of intermuscular fluid accumulations, and the type and density of the vasculature.

CONCLUSION: The MM OCT diagnostic procedure optimally meets the requirements of emergency surgery. Data on the microstructure and microcirculation of the intestinal wall can be obtained simultaneously in real time without requiring contrast agent injections. The depth of visualization of the intestinal wall from the side of the serous membrane is sufficient to assess the volume of the affected tissues. However, the methodology for obtaining MM OCT data needs to be improved to minimize the motion artefacts generated in actual clinical conditions.

Keywords: acute mesenteric ischemia (AMI); gut vitality; image assessment; intraoperative diagnostics; optical coherence tomography (OCT); optical coherence tomography angiography (OCTA)

References

  1. J Vasc Surg. 1995 Sep;22(3):271-7; discussion 278-9 - PubMed
  2. Curr Opin Crit Care. 2015 Apr;21(2):171-8 - PubMed
  3. Hamostaseologie. 2020 Dec;40(5):592-593 - PubMed
  4. J Plast Reconstr Aesthet Surg. 2020 Mar;73(3):590-597 - PubMed
  5. J Pediatr Surg Case Rep. 2020 Oct;61:101604 - PubMed
  6. Case Rep Med. 2012;2012:195926 - PubMed
  7. Tech Coloproctol. 2018 Oct;22(10):793-800 - PubMed
  8. J Gastrointest Surg. 2018 Dec;22(12):2117-2124 - PubMed
  9. Neurogastroenterol Motil. 2019 Apr;31(4):e13537 - PubMed
  10. BMC Surg. 2020 May 13;20(1):102 - PubMed
  11. Eur J Vasc Endovasc Surg. 2017 Apr;53(4):460-510 - PubMed
  12. Dis Esophagus. 2018 Jun 1;31(6): - PubMed
  13. Sensors (Basel). 2018 Apr 25;18(5): - PubMed
  14. Eur J Surg Oncol. 2021 May;47(5):1034-1041 - PubMed
  15. Surg Clin North Am. 1992 Feb;72(1):31-41 - PubMed
  16. Biomed Opt Express. 2018 Nov 05;9(12):5962-5981 - PubMed
  17. Medicine (Baltimore). 2016 Jun;95(25):e3875 - PubMed
  18. Int J Exp Pathol. 2018 Dec;99(6):304-311 - PubMed
  19. World J Gastrointest Surg. 2011 May 27;3(5):59-69 - PubMed
  20. J Surg Res. 2019 Jan;233:231-239 - PubMed
  21. Biomed Opt Express. 2017 Apr 07;8(5):2405-2444 - PubMed
  22. J Biomed Opt. 2017 Dec;22(12):1-17 - PubMed
  23. Vasc Health Risk Manag. 2020 Aug 10;16:331-341 - PubMed
  24. Ann Surg. 1981 May;193(5):628-37 - PubMed
  25. Dig Surg. 1998;15(1):55-9 - PubMed
  26. Am J Surg. 2020 Aug;220(2):309-315 - PubMed
  27. Physiol Meas. 2016 Nov;37(11):2064-2078 - PubMed
  28. World J Gastrointest Pathophysiol. 2016 Feb 15;7(1):125-30 - PubMed
  29. BMC Gastroenterol. 2019 May 30;19(1):80 - PubMed
  30. Opt Express. 2004 Jun 28;12(13):2977-98 - PubMed
  31. J Am Coll Surg. 2017 Sep;225(3):395-402 - PubMed
  32. Am Surg. 1993 May;59(5):309-11 - PubMed
  33. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT1-OCT13 - PubMed
  34. Biomed Opt Express. 2014 Nov 24;5(12):4387-404 - PubMed
  35. Gastrointest Endosc. 2010 May;71(6):899-906 - PubMed
  36. Scand J Clin Lab Invest. 2019 Nov;79(7):541-549 - PubMed
  37. J Surg Res. 2020 Oct;254:7-15 - PubMed
  38. J Invest Surg. 2002 Nov-Dec;15(6):343-50 - PubMed
  39. Cells Tissues Organs. 2017;203(6):353-364 - PubMed
  40. Khirurgiia (Mosk). 2012;(10):40-4 - PubMed
  41. Clin Imaging. 2021 May;73:86-95 - PubMed
  42. World J Emerg Surg. 2017 Aug 7;12:38 - PubMed
  43. J Biophotonics. 2018 Oct;11(10):e201700292 - PubMed
  44. Gastrointest Endosc. 2001 Aug;54(2):219-24 - PubMed
  45. Eur Surg Res. 2016;56(3-4):87-96 - PubMed
  46. Surg Clin North Am. 2007 Oct;87(5):1115-34, ix - PubMed
  47. Surgery. 2020 Jul;168(1):178-184 - PubMed
  48. Colorectal Dis. 2016 Mar;18(3):O103-10 - PubMed
  49. Prog Retin Eye Res. 2018 May;64:1-55 - PubMed
  50. Asian J Endosc Surg. 2020 Jul;13(3):329-335 - PubMed
  51. Retina. 2015 Nov;35(11):2163-80 - PubMed
  52. J Vasc Res. 2018;55(3):136-143 - PubMed
  53. Eur Surg Res. 2019;60(5-6):248-256 - PubMed
  54. Am J Gastroenterol. 2001 Sep;96(9):2633-9 - PubMed
  55. Neurourol Urodyn. 2015 Nov;34(8):723-9 - PubMed
  56. Int J Surg Case Rep. 2020;76:409-414 - PubMed
  57. Gastrointest Endosc. 2010 Feb;71(2):223-30 - PubMed
  58. Intensive Care Med. 2020 Jul;46(7):1464-1465 - PubMed
  59. Surg Endosc. 2018 Oct;32(10):4351-4356 - PubMed
  60. AJR Am J Roentgenol. 2009 Feb;192(2):408-16 - PubMed
  61. Surg Innov. 2019 Jun;26(3):293-301 - PubMed
  62. Scand J Gastroenterol. 1986 Nov;21(9):1147-52 - PubMed
  63. BMC Med Imaging. 2016 Jan 21;16:10 - PubMed
  64. Biomed Opt Express. 2019 Mar 25;10(4):2010-2019 - PubMed
  65. Prog Retin Eye Res. 2017 Sep;60:66-100 - PubMed

Publication Types

Grant support