Display options
Share it on

Ann Transl Med. 2021 Apr;9(8):631. doi: 10.21037/atm-20-7084.

Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in Kupffer cells.

Annals of translational medicine

Rong Xue, Jiannan Qiu, Song Wei, Mu Liu, Qi Wang, Peng Wang, Bowen Sha, Hao Wang, Yong Shi, Jinren Zhou, Jianhua Rao, Ling Lu

Affiliations

  1. School of Medicine, Southeast University, Nanjing, China.
  2. Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.
  3. The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China.
  4. State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
  5. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
  6. Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.

PMID: 33987329 PMCID: PMC8106004 DOI: 10.21037/atm-20-7084

Abstract

BACKGROUND: Lycopene is a naturally occurring carotenoid found in many fruits and vegetables, which has antioxidant effects. Although lycopene's protective effect has been observed on ischemia reperfusion (IR) injury in different organs, the effect of lycopene on Kupffer cells (KCs) has not been clearly elucidated in IR-induced acute hepatic inflammatory injury.

METHODS: Mice were administered with either olive oil (10 mL/kg body weight) as the control or lycopene (20 mg/kg body weight) by gavage for 2 weeks before undergoing hepatic IR injury.

RESULTS: In this study, we observed that the levels of aspartate aminotransferases (AST), alanine aminotransferase (ALT), and the percentages of hepatocellular apoptosis in mice pretreated with lycopene were significantly lower than control mice. Lycopene inhibited F4/80+ macrophage and Ly6G+ neutrophil accumulation, which further decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin 6 (IL-6). Interestingly, lycopene induced increased autophagy in KCs, which was evidenced by elevated autophagosomes and the increased protein level of LC3B. In these KCs, lycopene-induced upregulation of autophagy inhibited NOD-like receptor family pyrin domain-containing 3 protein (NLRP3) inflammasome activation, which was demonstrated by the reduced mRNA and protein levels of NLRP3, cleaved caspase-1, an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and IL-1β. Furthermore, 3-methyladenine, an autophagy inhibitor, abolished lycopene's inhibitory effect on the NLRP3 inflammasome in KCs, which led to increased hepatic IR injury. Intriguingly, we identified that the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were elevated in KCs isolated from IR-stressed mice pretreated with lycopene. Nrf2-siRNA or HO-1-siRNA could block the autophagy activation enhanced by lycopene in KCs, resulting in the activation of the NLRP3 inflammasome and aggravated hepatic IR injury.

CONCLUSIONS: Our findings demonstrated that lycopene promoted Nrf2/HO-1 pathway activation and further suppressed the NLRP3 inflammasome via enhancing KC autophagy, which alleviated hepatic IR injury.

2021 Annals of Translational Medicine. All rights reserved.

Keywords: Kupffer cells (KCs); Lycopene; NLRP3 inflammasome; autophagy; hepatic ischemia reperfusion injury (hepatic IR injury)

Conflict of interest statement

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/atm-20-7084). LL serves as an unpaid Associate Editor-in-Chief of Annals of

References

  1. Transplantation. 1990 Jan;49(1):103-7 - PubMed
  2. Exp Toxicol Pathol. 2014 Jul;66(4):179-85 - PubMed
  3. J Hepatol. 2016 Jan;64(1):118-27 - PubMed
  4. Hepatology. 2016 Nov;64(5):1683-1698 - PubMed
  5. Hepatology. 2020 Sep;72(3):1056-1072 - PubMed
  6. Int Immunopharmacol. 2020 Jun;83:106435 - PubMed
  7. Am J Transplant. 2015 Jan;15(1):76-87 - PubMed
  8. Physiol Rev. 2018 Jul 1;98(3):1169-1203 - PubMed
  9. J Cell Mol Med. 2019 Jun;23(6):4290-4300 - PubMed
  10. Physiol Rev. 2009 Oct;89(4):1269-339 - PubMed
  11. J Cell Physiol. 2015 Sep;230(9):2128-41 - PubMed
  12. Transplantation. 2002 Aug 15;74(3):315-9 - PubMed
  13. Cell Mol Immunol. 2018 Nov;15(11):973-982 - PubMed
  14. Adv Nutr. 2019 Jan 1;10(1):19-29 - PubMed
  15. Cell Mol Immunol. 2016 May;13(3):316-27 - PubMed
  16. Autophagy. 2020 Nov;16(11):1949-1973 - PubMed
  17. Liver Transpl. 2017 Jan;23(1):63-74 - PubMed
  18. Antimicrob Agents Chemother. 2015 Jan;59(1):579-85 - PubMed
  19. Autophagy. 2017 Oct 3;13(10):1767-1781 - PubMed
  20. Free Radic Biol Med. 2020 Nov 20;160:871-886 - PubMed
  21. J Immunol. 2014 Jun 1;192(11):5343-5353 - PubMed
  22. FEBS J. 2015 Jan;282(2):259-70 - PubMed
  23. Oxid Med Cell Longev. 2019 May 7;2019:9549506 - PubMed
  24. J Diabetes Investig. 2020 Sep;11(5):1126-1136 - PubMed
  25. Front Immunol. 2018 Oct 08;9:2305 - PubMed
  26. Cell Mol Immunol. 2020 Dec;17(12):1245-1256 - PubMed
  27. Hepatology. 2019 Aug;70(2):650-665 - PubMed
  28. Environ Sci Pollut Res Int. 2016 Aug;23(15):15262-74 - PubMed
  29. Antioxid Redox Signal. 2018 Dec 10;29(17):1727-1745 - PubMed
  30. Lancet Oncol. 2002 Apr;3(4):198 - PubMed
  31. Annu Rev Pharmacol Toxicol. 2013;53:401-26 - PubMed
  32. J Immunol. 2014 Jul 1;193(1):344-53 - PubMed
  33. Cell Death Dis. 2017 Aug 10;8(8):e2983 - PubMed
  34. J Immunol. 2019 Aug 15;203(4):990-1000 - PubMed
  35. Autophagy. 2020 Mar;16(3):548-561 - PubMed
  36. Autophagy. 2018;14(2):207-215 - PubMed
  37. J Neuroinflammation. 2018 Aug 28;15(1):242 - PubMed
  38. Transplantation. 1993 Jun;55(6):1265-72 - PubMed
  39. J Hepatol. 2018 Jul;69(1):99-109 - PubMed
  40. Arch Biochem Biophys. 2019 Dec 15;678:108186 - PubMed
  41. Hepatology. 2018 Feb;67(2):721-735 - PubMed
  42. Int Immunopharmacol. 2019 Mar;68:234-241 - PubMed
  43. Food Chem. 2019 Mar 15;276:402-409 - PubMed
  44. Nat Med. 2015 Jul;21(7):677-87 - PubMed
  45. Cytotechnology. 2015 May;67(3):487-91 - PubMed
  46. Adv Nutr. 2011 Jan;2(1):51-61 - PubMed
  47. Front Immunol. 2018 May 02;9:948 - PubMed
  48. Cell Death Dis. 2017 Jun 1;8(6):e2841 - PubMed
  49. Trends Biochem Sci. 2014 Apr;39(4):199-218 - PubMed
  50. Nat Rev Gastroenterol Hepatol. 2017 Mar;14(3):170-184 - PubMed
  51. Hepatology. 2019 Nov;70(5):1714-1731 - PubMed
  52. Free Radic Biol Med. 2018 Aug 20;124:1-11 - PubMed
  53. Gastroenterology. 2019 Nov;157(5):1368-1382 - PubMed
  54. Int J Cardiol. 2016 Apr 15;209:215-20 - PubMed
  55. Cancer Lett. 2016 Feb 1;371(1):38-47 - PubMed
  56. Am J Respir Cell Mol Biol. 2011 Oct;45(4):867-73 - PubMed
  57. Nat Rev Gastroenterol Hepatol. 2013 Feb;10(2):79-89 - PubMed
  58. Clin Nutr. 2016 Apr;35(2):428-435 - PubMed
  59. J Immunol. 2014 May 1;192(9):4342-51 - PubMed
  60. Mol Nutr Food Res. 2019 Nov;63(21):e1900602 - PubMed
  61. Int Immunopharmacol. 2019 Sep;74:105711 - PubMed
  62. Hepatology. 2018 Mar;67(3):1041-1055 - PubMed
  63. J Immunol. 2013 Sep 1;191(5):2665-79 - PubMed
  64. Infect Immun. 2018 Apr 23;86(5): - PubMed
  65. Turk J Urol. 2014 Mar;40(1):46-51 - PubMed
  66. Liver Transpl. 2010 Sep;16(9):1016-32 - PubMed
  67. J Immunol. 2020 Mar 1;204(5):1322-1333 - PubMed
  68. Mol Med Rep. 2017 Nov;16(5):6214-6221 - PubMed

Publication Types