Display options
Share it on

Biology (Basel). 2021 Apr 13;10(4). doi: 10.3390/biology10040324.

Induction of .

Biology

Byron Morales-Lange, Ivan Nombela, María Del Mar Ortega-Villaizán, Mónica Imarai, Paulina Schmitt, Luis Mercado

Affiliations

  1. Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile.
  2. Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
  3. Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000 Flanders, Belgium.
  4. Centro de Biotecnología Acuícola, Departamento de Biología, Universidad de Santiago de Chile, Estación Central, 9160000 Santiago, Chile.

PMID: 33924548 PMCID: PMC8069158 DOI: 10.3390/biology10040324

Abstract

In fish, the spleen is one of the major immune organs in the animal, and the splenocytes could play a key role in the activation and modulation of the immune response, both innate and adaptive. However, the crosstalk between different types of immune cells in the spleen has been poorly understood. In this work, an in vitro strategy is carried out to obtain and characterize mononuclear splenocytes from rainbow trout, using biomarkers associated with lymphocytes (CD4 and IgM) and antigen-presenting cells (CD83 and MHC II). Using these splenocytes, co-cultures of 24 and 48 h are used to determine the gene expression of master transcriptional factors that coordinate the polarization of T cells (

Keywords: Oncorhynchus mykiss; Piscirickettsia salmonis; interferon-gamma; mononuclear cells; transcriptional factors

References

  1. Fish Shellfish Immunol. 2015 Aug;45(2):300-6 - PubMed
  2. Cancer Immunol Immunother. 2014 Sep;63(9):869-76 - PubMed
  3. Cell Mol Immunol. 2015 Sep;12(5):558-65 - PubMed
  4. Infect Immun. 2017 Dec 19;86(1): - PubMed
  5. Int Immunol. 2011 Nov;23(11):661-8 - PubMed
  6. J Exp Med. 2017 Dec 4;214(12):3519-3530 - PubMed
  7. Dis Aquat Organ. 2017 Feb 8;123(1):29-43 - PubMed
  8. Biology (Basel). 2016 Jan 19;5(1): - PubMed
  9. Dev Comp Immunol. 2015 Nov;53(1):210-21 - PubMed
  10. Dev Comp Immunol. 2017 Aug;73:156-162 - PubMed
  11. J Immunol. 2005 Aug 15;175(4):2484-94 - PubMed
  12. Biology (Basel). 2015 Sep 25;4(4):640-63 - PubMed
  13. Immunol Lett. 2004 Jun 15;94(1-2):141-51 - PubMed
  14. Dev Comp Immunol. 2016 Dec;65:73-78 - PubMed
  15. Clin Rev Allergy Immunol. 2017 Jun;52(3):364-372 - PubMed
  16. J Immunol. 2015 Jan 1;194(1):187-99 - PubMed
  17. J Immunol. 2016 May 15;196(10):4150-63 - PubMed
  18. Eur J Immunol. 2007 Mar;37(3):686-95 - PubMed
  19. Blood. 2008 Sep 1;112(5):1557-69 - PubMed
  20. J Virol Methods. 2006 Mar;132(1-2):154-9 - PubMed
  21. Cells. 2019 Apr 27;8(5): - PubMed
  22. Dev Comp Immunol. 2018 Mar;80:2-14 - PubMed
  23. Appl Environ Microbiol. 2016 Apr 04;82(8):2563-2571 - PubMed
  24. Infect Immun. 2012 Dec;80(12):4271-80 - PubMed
  25. Biomol Concepts. 2018 May 30;9(1):64-79 - PubMed
  26. Fish Shellfish Immunol. 2013 Aug;35(2):197-206 - PubMed
  27. Cell Mol Immunol. 2007 Apr;4(2):105-11 - PubMed
  28. Nat Rev Cardiol. 2016 Mar;13(3):167-79 - PubMed
  29. Fish Shellfish Immunol. 2010 Nov;29(5):705-15 - PubMed
  30. Methods. 2001 Dec;25(4):402-8 - PubMed
  31. Front Immunol. 2018 May 04;9:847 - PubMed
  32. Lab Invest. 2019 Mar;99(3):305-318 - PubMed
  33. Arch Dermatol Res. 2007 May;299(2):59-69 - PubMed
  34. Sci Rep. 2020 Oct 26;10(1):18252 - PubMed
  35. Front Immunol. 2019 Mar 06;10:360 - PubMed
  36. Fish Shellfish Immunol. 2013 Dec;35(6):1703-18 - PubMed

Publication Types

Grant support