Display options
Share it on

Theory Biosci. 2021 Jun;140(2):197-203. doi: 10.1007/s12064-021-00344-8. Epub 2021 May 14.

Nutrient supply, cell spatial correlation and Gompertzian tumor growth.

Theory in biosciences = Theorie in den Biowissenschaften

P Castorina, D Carco'

Affiliations

  1. Istituto Oncologico del Mediterraneo, Viagrande, Italy. [email protected].
  2. Istituto Nazionale Fisica Nucleare, Catania, Italy. [email protected].
  3. Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic. [email protected].
  4. Istituto Oncologico del Mediterraneo, Viagrande, Italy.

PMID: 33988848 PMCID: PMC8120020 DOI: 10.1007/s12064-021-00344-8

Abstract

Gompertzian tumor growth can be reproduced by mitosis, related to nutrient supply, with local spatial cell correlations. The global energy constraint alone does not reproduce in vivo data by the observed values of the nutrient expenditure for the cell activities. The depletion of the exponential growth, described by the Gompertz law, is obtained by mean field spatial correlations or by a small word network among cells. The well-known interdependence between the two parameters of the Gompertz growth naturally emerges and depends on the cell volume and on the tumor density.

Keywords: Cell spatial correlation; Gompertz law; Tumor cell metabolism; Tumor growth

References

  1. Afenya EK, Calderon CP (2000) Diverse ideas on the growth kinetics of disseminated cancer cells. Bull Math Biol 62:427 - PubMed
  2. Anguelov R, Borisov M, Kyurkchiev N, Markov S (2007) On the chemical meaning of some growth models possessing Gompertzian-type property. Math Meth Appl Sci 41:1–12 - PubMed
  3. Bajzer Z (1999) Gompertzian growth as a self-similar and allometric process. Growth Dev Aging 63:3 - PubMed
  4. Bajzer Z, Vuk-Pavlovic S (2000) New dimensions of gompertzian growth. J Theor Med 2:307 - PubMed
  5. Bajzer Z, Vuk-Pavlovic S (1997) Mathematical modeling of tumor growth kinetics. In: Adam J, Bellomo N (eds) A survey of models for tumor-immune system dynamics. Birkenhauser, Boston, p 89 - PubMed
  6. Calderon CP, Kwembe TA (1991) Modeling tumor growth. Math Biosci 103:97 - PubMed
  7. Castorina P, Carco D, Guiot C, Deisboeck TS (2009) Tumor growth instability and its implications for chemotherapy. Cancer Res 69(21):8507. https://doi.org/10.1158/0008-5472.CAN-09-0653 - PubMed
  8. Castorina P, Delsanto PP, Guiot C (2006) Classification scheme for phenomenological universalities in growth problems in physics and other sciences. Phys Rev Lett 96:188701 - PubMed
  9. Castorina P, Zappala D (2006) Tumor Gompertzian growth by cellular energetic balance. Physica A 365(2):473–480 - PubMed
  10. Castorina P, Iorio A, Lanteri D (2020) Data analysis on Coronavirus spreading by macroscopic growth laws. Int J Mod Phys C 31(10):2050135 - PubMed
  11. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11 - PubMed
  12. Fernandez-de-Cossio-Diaz J, Vazquez A (2017) Limits of aerobic metabolism in cancer cells. Sci Rep 7:13488 - PubMed
  13. Frenzen CL, Murray JD (1986) A cell kinetics justification for Gompertz equation. SIAM J Appl Math 46:614 - PubMed
  14. Gavrilov LA, Gavrilova NS (2001) The reliability theory of aging and longevity. J Theor Biol 213(4):527–545 - PubMed
  15. Gompertz B (1825) On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Philos Trans R Soc 115:513 - PubMed
  16. Gyllenberg M, Webb GF (1989) Quiescence as an explanation of Gompertzian tumor growth. Growth Dev Aging 53:25 - PubMed
  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646 - PubMed
  18. Jarrett AM et al (2018) Mathematical models of tumor cell proliferation: a review of the literature. Expert Rev Anticancer Ther 18(12):1271–1286 - PubMed
  19. Kendal WS (1985) Gompertzian growth as a consequence of tumor heterogeneity. Math Biosci 73:103 - PubMed
  20. Kozusko F, Bajzer Z (2003) Combining Gompertzian growth and cell population dynamics. Math Biosci 185:153–167 - PubMed
  21. Laird AK, Tyler SA, Barton AD (1965) Dynamics of normal growth. Br J Cancer 19:233–248 - PubMed
  22. Laird AK, Tyler SA, Barton AD (1965) Dynamics of tumor growth: comparison of growth rates. Br J Cancer 19:278–291 - PubMed
  23. Latora V, Nicosia V, Russo G (2017) Complex networks—principles, methods and applications. Cambridge University Press, Cambridge - PubMed
  24. Ling Y, He B (1993) Entropic analysis of biological growth models. IEEE Trans Biomed Eng 40:1193 - PubMed
  25. Makany R (1991) A theoretical basis for GompertzÕs curve. Biometr J 33:121 - PubMed
  26. Mombach JCM, Lemke N, Bodmann BE, Idiart MAP (2002) A mean-field theory of cellular growth. Europhys Lett 59:923 - PubMed
  27. Mombach CM, Lemke N, Bodmann BEJ, Idiart MAP (2002) A mean-field theory of cellular growth. Europhys Lett 59(6):923 - PubMed
  28. Murray JD (1989) Mathematical biology. Springer, Berlin - PubMed
  29. Norton LA (1988) Gompertzian model of human breast cancer growth. Cancer Res 48:7067–7071 - PubMed
  30. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27 - PubMed
  31. Qi A-S, Zheng X, Du C-Y, An B-S (1993) A cellular automaton model of cancerous growth. J Theor Biol 161:1 - PubMed
  32. Savageau MA (1979) Allometric morphogenesis of complex systems: a derivation of the basic equations from first principles. Proc Natl Acad Sci USA 76:6023 - PubMed
  33. Shklovskii BI (2005) A simple derivation of the Gompertz law for human mortality. Theory Biosci 123:431–433 - PubMed
  34. Stauffer D, Stanley HE (2017) From newton to mandelbrot. Theoretical, Mathematical and Computational Physics. Springer ed., Berlin - PubMed
  35. Vaghi C et al (2020) Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput Biol 16(2):e1007178 - PubMed
  36. Waliszewski P, Konarski J (2003) Gompertzian curve reveals fractal properties of tumor growth. Chaos Soliton Fract 16(5):665–674 - PubMed
  37. Waliszewski P, Molski M, Konarski J (1998) On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network. J Surg Oncol 68:70–78 - PubMed
  38. Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393:440–442 - PubMed
  39. Wheldon TE (1988) Mathematical models in cancer research. Adam Hilger Publisher, Bristol - PubMed
  40. Witten M (1985) A return to time, cells, systems, and aging: III. Gompertzian models of biological aging and some possible roles for critical elements. Mech Aging Dev 32:141 - PubMed

MeSH terms

Publication Types

Grant support