Display options
Share it on

Environ Sci (Camb). 2021 Jan 20;7:504-520. doi: 10.1039/d0ew00946f.

Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the U.S.

Environmental science : water research & technology

Brian M Pecson, Emily Darby, Charles N Haas, Yamrot M Amha, Mitchel Bartolo, Richard Danielson, Yeggie Dearborn, George Di Giovanni, Christobel Ferguson, Stephanie Fevig, Erica Gaddis, Donald Gray, George Lukasik, Bonnie Mull, Liana Olivas, Adam Olivieri, Yan Qu,

Affiliations

  1. Trussell Technologies Inc., Oakland, California, USA.
  2. Drexel University, Philadelphia, Pennsylvania, USA.
  3. Trussell Technologies Inc., Pasadena, California, USA.
  4. Trussell Technologies Inc., Solana Beach, California, USA.
  5. Cel Analytical Inc., San Francisco, California, USA.
  6. Metropolitan Water District of Southern California, Los Angeles, California, USA.
  7. The Water Research Foundation, Alexandria, Virginia, USA.
  8. Utah Department of Environmental Quality, Salt Lake City, Utah, USA.
  9. East Bay Municipal Utility District, Oakland, California, USA.
  10. BCS Laboratories Inc., Gainesville, Florida, USA.
  11. EOA Inc., Oakland, California, USA.

PMID: 34017594 PMCID: PMC8129921 DOI: 10.1039/d0ew00946f

Abstract

In response to COVID-19, the international water community rapidly developed methods to quantify the SARS-CoV-2 genetic signal in untreated wastewater. Wastewater surveillance using such methods has the potential to complement clinical testing in assessing community health. This interlaboratory assessment evaluated the reproducibility and sensitivity of 36 standard operating procedures (SOPs), divided into eight method groups based on sample concentration approach and whether solids were removed. Two raw wastewater samples were collected in August 2020, amended with a matrix spike (betacoronavirus OC43), and distributed to 32 laboratories across the U.S. Replicate samples analyzed in accordance with the project's quality assurance plan showed high reproducibility across the 36 SOPs: 80% of the recovery-corrected results fell within a band of ±1.15 log

Conflict of interest statement

Conflicts of interest There are no conflicts of interest to declare.

References

  1. Sci Total Environ. 2021 Jun 25;775:145790 - PubMed
  2. mSystems. 2020 Jul 21;5(4): - PubMed
  3. Int J Epidemiol. 2003 Oct;32(5):772-7 - PubMed
  4. Appl Environ Microbiol. 2009 Sep;75(17):5544-54 - PubMed
  5. Food Environ Virol. 2016 Dec;8(4):251-261 - PubMed
  6. Sci Immunol. 2020 May 13;5(47): - PubMed
  7. Sci Total Environ. 2020 Oct 15;739:139076 - PubMed
  8. Viruses. 2020 Jun 06;12(6): - PubMed
  9. J Environ Chem Eng. 2020 Oct;8(5):104306 - PubMed
  10. Appl Environ Microbiol. 2014 Nov;80(21):6771-81 - PubMed
  11. Water Res. 2020 Feb 1;169:115213 - PubMed
  12. J Virol Methods. 2004 Oct;121(1):85-91 - PubMed
  13. Nat Med. 2020 Apr;26(4):502-505 - PubMed
  14. Environ Res. 2020 Dec;191:110092 - PubMed
  15. Environ Sci Technol. 2016 May 17;50(10):5077-85 - PubMed
  16. Nature. 2020 May;581(7809):465-469 - PubMed
  17. Biomol Detect Quantif. 2017 Apr 29;12:1-6 - PubMed
  18. Water Res. 2020 Nov 1;186:116296 - PubMed
  19. Sci Total Environ. 2021 Apr 10;764:142929 - PubMed
  20. Med Microbiol Immunol. 2005 Jan;194(1-2):1-6 - PubMed
  21. Gastroenterology. 2020 Jul;159(1):81-95 - PubMed
  22. Sci Total Environ. 2020 Aug 1;728:138764 - PubMed
  23. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10625-E10633 - PubMed
  24. Gastroenterology. 2020 May;158(6):1831-1833.e3 - PubMed
  25. Water Res. 2018 Jun 1;136:137-149 - PubMed

Publication Types

Grant support