Display options
Share it on

FEBS J. 2021 Apr 30; doi: 10.1111/febs.15904. Epub 2021 Apr 30.

Coordination of transcription and processing of tRNA.

The FEBS journal

Nayef Jarrous, Dhivakar Mani, Aravind Ramanathan

Affiliations

  1. Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.

PMID: 33929081 DOI: 10.1111/febs.15904

Abstract

Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.

© 2021 Federation of European Biochemical Societies.

Keywords: RNA polymerase III; RNase P; RNase Z; tRNA; tRNA splicing complex

References

  1. Hoagland MB, Stephenson ML, Scott JF, Hecht LI & Zamecnik PC (1958) A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231, 241-257. - PubMed
  2. Altman S & Smith JD (1971) Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol 233, 35-39. - PubMed
  3. Guerrier-Takada C, Gardiner K, Marsh T, Pace N & Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857. - PubMed
  4. Phizicky EM & Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24, 1832-1860. - PubMed
  5. Jarrous N & Altman S (2001) Human ribonuclease P. Methods Enzymol 342, 93-100. - PubMed
  6. Hopper AK & Nostramo RT (2019) tRNA processing and subcellular trafficking proteins multitask in pathways for other RNAs. Front Genet 10, 96. - PubMed
  7. Schimmel P (2018) The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol 19, 45-58. - PubMed
  8. Chatterjee K, Nostramo RT, Wan Y & Hopper AK (2018) tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: location, location, location. Biochim Biophys acta Gene Regul Mech 1861, 373-386. - PubMed
  9. Gu W (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5’ end of tRNAHis. Genes Dev 17, 2889-2901. - PubMed
  10. Rossmanith W (2012) Of P and Z: mitochondrial tRNA processing enzymes. Biochim Biophys Acta 1819, 1017-1026. - PubMed
  11. Rossmanith W (2011) Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation. PLoS One 6, e19152. - PubMed
  12. van Tol H, Stange N, Gross HJ & Beier H (1987) A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J 6, 35-41. - PubMed
  13. Yoshihisa T, Ohshima C, Yunoki-Esaki K & Endo T (2007) Cytoplasmic splicing of tRNA in Saccharomyces cerevisiae. Genes Cells 12, 285-297. - PubMed
  14. Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Trowitzsch S, Will CL, Lührmann R, Söll D et al. (2011) HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331, 760-764. - PubMed
  15. Yoo CJ & Wolin SL (1997) The yeast La protein is required for the 3’ endonucleolytic cleavage that matures tRNA precursors. Cell 89, 393-402. - PubMed
  16. Sugahara J, Fujishima K, Morita K, Tomita M & Kanai A (2009) Disrupted tRNA gene diversity and possible evolutionary scenarios. J Mol Evol 69, 497-504. - PubMed
  17. Goodman HM, Olson MV & Hall BD (1977) Nucleotide sequence of a mutant eukaryotic gene: the yeast tyrosine-inserting ochre suppressor SUP4-o. Proc Natl Acad Sci USA 74, 5453-5457. - PubMed
  18. Valenzuela P, Venegas A, Weinberg F, Bishop R & Rutter WJ (1978) Structure of yeast phenylalanine-tRNA genes: an intervening DNA segment within the region coding for the tRNA. Proc Natl Acad Sci USA 75, 190-194. - PubMed
  19. Hopper A, Schultz L & Shapiro R (1980) Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs. Cell 19, 741-751. - PubMed
  20. Melton DA, De Robertis EM & Cortese R (1980) Order and intracellular location of the events involved in the maturation of a spliced tRNA. Nature 284, 143-148. - PubMed
  21. Wan Y & Hopper AK (2018) From powerhouse to processing plant: conserved roles of mitochondrial outer membrane proteins in tRNA splicing. Genes Dev 32, 1309-1314. - PubMed
  22. Jarrous N (2017) Roles of RNase P and Its subunits. Trends Genet 33, 594-603. - PubMed
  23. Pinto PH, Kroupova A, Schleiffer A, Mechtler K, Jinek M, Weitzer S & Martinez J (2020) ANGEL2 is a member of the CCR4 family of deadenylases with 2’,3’-cyclic phosphatase activity. Science 369, 524-530. - PubMed
  24. Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R & Abelson JN (1997) The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89, 849-858. - PubMed
  25. Copela LA, Fernandez CF, Sherrer RL & Wolin SL (2008) Competition between the Rex1 exonuclease and the La protein affects both Trf4p-mediated RNA quality control and pre-tRNA maturation. RNA 14, 1214-1227. - PubMed
  26. Paushkin SV, Patel M, Furia BS, Peltz SW & Trotta CR (2004) Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3’ end formation. Cell 117, 311-321. - PubMed
  27. Eder PS, Kekuda R, Stolc V & Altman S (1997) Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. Proc Natl Acad Sci USA 94, 1101-1106. - PubMed
  28. Chamberlain JR, Lee Y, Lane WS & Engelke DR (1998) Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 12, 1678-1690. - PubMed
  29. Wu J, Niu S, Tan M, Huang C, Li M, Song Y, Wang Q, Chen J, Shi S, Lan P et al. (2018) Cryo-EM structure of the human ribonuclease P holoenzyme. Cell 175, 1393-1404.e11. - PubMed
  30. Lan P, Tan M, Zhang Y, Niu S, Chen J, Shi S, Qiu S, Wang X, Peng X, Cai G et al. (2018) Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 362, eaat6678. - PubMed
  31. Van Eenennaam H, Jarrous N, Van Venrooij WJ & Pruijn GJM (2000) Architecture and function of the human endonucleases RNase P and RNase MRP. IUBMB Life 49, 265-272. - PubMed
  32. Marquez SM, Chen JL, Evans D & Pace NR (2006) Structure and function of eukaryotic Ribonuclease P RNA. Mol Cell 24, 445-456. - PubMed
  33. Mann H, Ben-Asouli Y, Schein A, Moussa S & Jarrous N (2003) Eukaryotic RNase P: role of RNA and protein subunits of a primordial catalytic ribonucleoprotein in RNA-based catalysis. Mol Cell 12, 925-935. - PubMed
  34. Kikovska E, Svärd SG & Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci USA 104, 2062-2067. - PubMed
  35. Huang Y, Intine RV, Mozlin A, Hasson S & Maraia RJ (2005) Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3’ cleavage activity increase 3’-terminal oligo(U) length and La-dependent tRNA processing. Mol Cell Biol 25, 621-636. - PubMed
  36. Arimbasseri AG & Maraia RJ (2016) RNA polymerase III advances: structural and tRNA functional views. Trends Biochem Sci 41, 546-559. - PubMed
  37. Gogakos T, Brown M, Garzia A, Meyer C, Hafner M & Tuschl T (2017) Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep 20, 1463-1475. - PubMed
  38. Weiner AM (2004) tRNA maturation: RNA polymerization without a nucleic acid template. Curr Biol 14, R883-R885. - PubMed
  39. Nishikura K & De Robertis EM (1981) RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol 145, 405-420. https://pubmed.ncbi.nlm.nih.gov/7196457/ - PubMed
  40. Popow J, Jurkin J, Schleiffer A & Martinez J (2014) Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature 511, 104-107. - PubMed
  41. Trotta CR, Paushkin SV, Patel M, Li H & Peltz SW (2006) Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site. Nature 441, 375-377. - PubMed
  42. Schmidt CA & Matera AG (2020) tRNA introns: presence, processing, and purpose. Wiley Interdiscip Rev RNA 11, e1583. - PubMed
  43. Kleman-Leyer K, Armbruster DW & Daniels CJ (1997) Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Cell 89, 839-847. - PubMed
  44. Banerjee A, Ghosh S, Goldgur Y & Shuman S (2019) Structure and two-metal mechanism of fungal tRNA ligase. Nucleic Acids Res 47, 1428-1439. - PubMed
  45. Hayne CK, Schmidt CA, Haque MI, Matera AG & Stanley RE (2020) Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res 48, 7609-7622. - PubMed
  46. Wu J & Hopper AK (2014) Healing for destruction: tRNA intron degradation in yeast is a two-step cytoplasmic process catalyzed by tRNA ligase Rlg1 and 5’-to-3’ exonuclease Xrn1. Genes Dev 28, 1556-1561. - PubMed
  47. Popow J, Schleiffer A & Martinez J (2012) Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 69, 2657-2670. - PubMed
  48. Schmidt CA, Giusto JD, Bao A, Hopper AK & Matera AG (2019) Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res 47, 6452-6465. - PubMed
  49. Pérez-González A, Pazo A, Navajas R, Ciordia S, Rodriguez-Frandsen A & Nieto A (2014) hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling RNA-transporting complex. PLoS One 9, e90957. - PubMed
  50. De Robertis EM, Black P & Nishikura K (1981) Intranuclear location of the tRNA splicing enzymes. Cell 23, 89-93. - PubMed
  51. Schramm L & Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16, 2593-2620. - PubMed
  52. Wang Z & Roeder RG (1997) Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 11, 1315-1326. - PubMed
  53. White RJ (2011) Transcription by RNA polymerase III: more complex than we thought. Nat Rev Genet 12, 459-463. - PubMed
  54. Dieci G, Fiorino G, Castelnuovo M, Teichmann M & Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23, 614-622. - PubMed
  55. Moir RD & Willis IM (2013) Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta 1829, 361-375. - PubMed
  56. James Faresse N, Canella D, Praz V, Michaud J, Romascano D & Hernandez N (2012) Genomic study of RNA polymerase II and III SNAPc-bound promoters reveals a gene transcribed by both enzymes and a broad use of common activators. PLoS Genet 8, e1003028. - PubMed
  57. Cantarella S, Carnevali D, Morselli M, Conti A, Pellegrini M, Montanini B & Dieci G (2019) Alu RNA modulates the expression of cell cycle genes in human fibroblasts. Int J Mol Sci 20, 3315. - PubMed
  58. Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ, Cassiday PA, Nelson CA, Hagedorn CH, Graves BJ et al. (2010) Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 17, 620-628. - PubMed
  59. Zhang X-O, Gingeras TR & Weng Z (2019) Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res 29, 1402-1414. - PubMed
  60. Abascal-Palacios G, Ramsay EP, Beuron F, Morris E & Vannini A (2018) Structural basis of RNA polymerase III transcription initiation. Nature 553, 301-306. - PubMed
  61. Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J, Hagen WJH, Sachse C & Müller CW (2015) Molecular structures of unbound and transcribing RNA polymerase III. Nature 528, 231-236. - PubMed
  62. Vannini A & Cramer P (2012) Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 45, 439-446. - PubMed
  63. Roeder RG (1996) Nuclear RNA polymerases: role of general initiation factors and cofactors in eukaryotic transcription. Methods Enzymol 273, 165-171. - PubMed
  64. Wang Q, Li S, Wan F, Xu Y, Wu Z, Cao M, Lan P, Lei M & Wu J (2021) Structural insights into transcriptional regulation of human RNA polymerase III. Nat Struct Mol Biol 28, 220-227. - PubMed
  65. Girbig M, Misiaszek AD, Vorländer MK, Lafita A, Grötsch H, Baudin F, Bateman A & Müller CW (2021) Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat Struct Mol Biol 28, 210-219. - PubMed
  66. Vorländer MK, Khatter H, Wetzel R, Hagen WJH & Müller CW (2018) Molecular mechanism of promoter opening by RNA polymerase III. Nature 553, 295-300. - PubMed
  67. Lata E & Teichmann M (2021) Activation and repression at the heart of human RNA polymerase III. Nat Struct Mol Biol 28, 124-126. - PubMed
  68. Ramsay EP, Abascal-Palacios G, Daiß JL, King H, Gouge J, Pilsl M, Beuron F, Morris E, Gunkel P, Engel C et al. (2020) Structure of human RNA polymerase III. Nat Commun 11, 6409. - PubMed
  69. Geiduschek EP & Kassavetis GA (2001) The RNA polymerase III transcription apparatus 11 Edited by P. E. Wright. J Mol Biol 310, 1-26. - PubMed
  70. Dergai O & Hernandez N (2019) How to recruit the correct RNA polymerase? Lessons from snRNA genes. Trends Genet 35, 457-469. - PubMed
  71. Jarrous N & Reiner R (2007) Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 35, 3519-3524. - PubMed
  72. Reiner R, Ben-Asouli Y, Krilovetzky I & Jarrous N (2006) A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 20, 1621-1635. - PubMed
  73. Serruya R, Orlovetskie N, Reiner R, Dehtiar-Zilber Y, Wesolowski D, Altman S & Jarrous N (2015) Human RNase P ribonucleoprotein is required for formation of initiation complexes of RNA polymerase III. Nucleic Acids Res 43, 5442-5450. - PubMed
  74. Ferrari R & Dieci G (2008) The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors. Cell Mol Biol Lett 13, 112-118. - PubMed
  75. Dieci G, Percudani R, Giuliodori S, Bottarelli L & Ottonello S (2000) TFIIIC-independent in vitro transcription of yeast tRNA genes 1 1 Edited by M. Yaniv. J Mol Biol 299, 601-613. - PubMed
  76. Hu P, Samudre K, Wu S, Sun Y & Hernandez N (2004) CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression. Mol Cell 16, 81-92. - PubMed
  77. Guerrier-Takada C, Eder PS, Gopalan V & Altman S (2002) Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA 8, 290-295. - PubMed
  78. Lygerou Z, Pluk H, van Venrooij WJ & Séraphin B (1996) hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. EMBO J 15, 5936-5948. - PubMed
  79. van Eenennaam H, Lugtenberg D, Vogelzangs JHP, van Venrooij WJ & Pruijn GJM (2001) hPop5, a protein subunit of the human RNase MRP and RNase P endoribonucleases. J Biol Chem 276, 31635-31641. - PubMed
  80. Lee DY & Clayton DA (1997) RNase mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Dev 11, 582-592. - PubMed
  81. Welting TJM, Peters FMA, Hensen SMM, van Doorn NL, Kikkert BJ, Raats JMH, van Venrooij WJ & Pruijn GJM (2007) Heterodimerization regulates RNase MRP/RNase P association, localization, and expression of Rpp20 and Rpp25. RNA 13, 65-75. - PubMed
  82. Lygerou Z, Mitchell P, Petfalski E, Séraphin B & Tollervey D (1994) The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 8, 1423-1433. - PubMed
  83. Lygerou Z, Allmang C, Tollervey D & Séraphin B (1996) Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272, 268-270. - PubMed
  84. Perederina A, Li D, Lee H, Bator C, Berezin I, Hafenstein SL & Krasilnikov AS (2020) Cryo-EM structure of catalytic ribonucleoprotein complex RNase MRP. Nat Commun 11, 3474. - PubMed
  85. Sloan KE, Mattijssen S, Lebaron S, Tollervey D, Pruijn GJM & Watkins NJ (2013) Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J Cell Biol 200, 577-588. - PubMed
  86. Goldfarb KC & Cech TR (2017) Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev 31, 59-71. - PubMed
  87. Smola MJ, Calabrese JM & Weeks KM (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry 54, 6867-6875. - PubMed
  88. Thompson M, Haeusler RA, Good PD & Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302, 1399-1401. - PubMed
  89. Bertrand E, Houser-Scott F, Kendall A, Singer RH & Engelke DR (1998) Nucleolar localization of early tRNA processing. Genes Dev 12, 2463-2468. - PubMed
  90. Abu-Zhayia ER, Khoury-Haddad H, Guttmann-Raviv N, Serruya R, Jarrous N & Ayoub N (2017) A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks. Sci Rep 7, 1002. - PubMed
  91. Lee B, Matera AG, Ward DC & Craft J (1996) Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA 93, 11471-11476. - PubMed
  92. Jarrous N (2002) Human ribonuclease P: subunits, function, and intranuclear localization. RNA 8, 1-7. - PubMed
  93. Garcia PD, Leach RW, Wadsworth GM, Choudhary K, Li H, Aviran S, Kim HD & Zakian VA (2020) Stability and nuclear localization of yeast telomerase depend on protein components of RNase P/MRP. Nat Commun 11, 2173. - PubMed
  94. Garcia PD & Zakian VA (2020) A new role for proteins subunits of RNase P: stabilization of the telomerase holoenzyme. Microb Cell (Graz, Austria) 7, 250-254. - PubMed
  95. Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S & Jarrous N (2011) RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res 39, 5704-5714. - PubMed
  96. Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR & Conte MR (2010) Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 38, 4052-4066. - PubMed
  97. Reiner R, Krasnov-Yoeli N, Dehtiar Y & Jarrous N (2008) Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I. PLoS One 3, e4072. - PubMed
  98. Jarrous N, Reiner R, Wesolowski D, Mann H, Guerrier-Takada C & Altman S (2001) Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. RNA 7, 1153-1164. - PubMed
  99. Pombo A (1999) Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J 18, 2241-2253. - PubMed
  100. Hoffmann NA, Jakobi AJ, Vorländer MK, Sachse C & Müller CW (2016) Transcribing RNA polymerase III observed by electron cryomicroscopy. FEBS J 283, 2811-2819. - PubMed
  101. Han Y, Yan C, Fishbain S, Ivanov I & He Y (2018) Structural visualization of RNA polymerase III transcription machineries. Cell Discov 4, 40. - PubMed
  102. Li Y & Altman S (2001) A subunit of human nuclear RNase P has ATPase activity. Proc Natl Acad Sci USA 98, 441-444. - PubMed
  103. Shastrula PK, Lund PJ, Garcia BA & Janicki SM (2018) Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms. J Biol Chem 293, 12360-12377. - PubMed
  104. Newhart A, Powers SL, Shastrula PK, Sierra I, Joo LM, Hayden JE, Cohen AR & Janicki SM (2016) RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition. Mol Biol Cell 27, 1154-1169. - PubMed
  105. Molla-Herman A, Vallés AM, Ganem-Elbaz C, Antoniewski C & Huynh J-R (2015) tRNA processing defects induce replication stress and Chk2-dependent disruption of piRNA transcription. EMBO J 34, 3009-3027. - PubMed
  106. Ramanathan A, Weintraub M, Orlovetskie N, Serruya R, Mani D, Marcu O, Stepensky P, Weisblum Y, Djian E, Shaag A et al. (2020) A mutation in POLR3E impairs antiviral immune response and RNA polymerase III. Proc Natl Acad Sci USA 117, 22113-22121. - PubMed
  107. Laski FA, Fire AZ, RajBhandary UL & Sharp PA (1983) Characterization of tRNA precursor splicing in mammalian extracts. J Biol Chem 258, 11974-11980. - PubMed
  108. Hirata A (2019) Recent insights into the structure, function, and evolution of the RNA-splicing endonucleases. Front Genet 10.103 - PubMed
  109. Arimbasseri GA (2018) Interactions between RNAP III transcription machinery and tRNA processing factors. Biochim Biophys acta Gene Regul Mech 1861, 354-360. - PubMed
  110. Miller OL & Beatty BR (1969) Visualization of nucleolar genes. Science 164, 955-957. - PubMed
  111. Turowski TW & Tollervey D (2015) Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdiscip Rev RNA 6, 129-139. - PubMed
  112. Sondalle SB & Baserga SJ (2014) Human diseases of the SSU processome. Biochim Biophys Acta 1842, 758-764. - PubMed
  113. Grainger RM & Maizels N (1980) Dictyostelium ribosomal RNA is processed during transcription. Cell 20, 619-623. - PubMed
  114. Koš M & Tollervey D (2010) Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 37, 809-820. - PubMed
  115. Greenberg H & Penman S (1966) Methylation and processing of ribosomal RNA in HeLa cells. J Mol Biol 21, 527-535. - PubMed
  116. Mougey EB, O’Reilly M, Osheim Y, Miller OL, Beyer A & Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7, 1609-1619. - PubMed
  117. Schneider DA, Michel A, Sikes ML, Vu L, Dodd JA, Salgia S, Osheim YN, Beyer AL & Nomura M (2007) Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 26, 217-229. - PubMed
  118. Delan-Forino C, Spanos C, Rappsilber J & Tollervey D (2020) Substrate specificity of the TRAMP nuclear surveillance complexes. Nat Commun 11, 3122. - PubMed
  119. Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ & Beyer AL (2004) Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol Cell 16, 943-954. - PubMed
  120. Dragon F, Gallagher JEG, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y et al. (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967-970. - PubMed
  121. Gallagher JEG, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL & Baserga SJ (2004) RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 18, 2506-2517. - PubMed
  122. Turowski TW, Petfalski E, Goddard BD, French SL, Helwak A & Tollervey D (2020) Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol Cell 79, 488-503.e11. - PubMed
  123. Turowski TW & Tollervey D (2016) Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans 44, 1367-1375. - PubMed
  124. El Hage A, French SL, Beyer AL & Tollervey D (2010) Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24, 1546-1558. - PubMed
  125. El Hage A, Koper M, Kufel J & Tollervey D (2008) Efficient termination of transcription by RNA polymerase I requires the 5’ exonuclease Rat1 in yeast. Genes Dev 22, 1069-1081. - PubMed
  126. Talkish J, Biedka S, Jakovljevic J, Zhang J, Tang L, Strahler JR, Andrews PC, Maddock JR & Woolford JL (2016) Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA 22, 852-866. - PubMed
  127. Bentley DL (2014) Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15, 163-175. - PubMed
  128. Beyer AL, Bouton AH & Miller OL (1981) Correlation of hnRNP structure and nascent transcript cleavage. Cell 26, 155-165. - PubMed
  129. Beyer AL & Osheim YN (1988) Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 2, 754-765. - PubMed
  130. Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H, Ishitani R, Sugita A, Hirose Y, Iwasaki S, Nureki O et al. (2019) Cap-specific terminal N 6 -methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080. - PubMed
  131. McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M & Bentley DL (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357-361. - PubMed
  132. Bentley D (1999) Coupling RNA polymerase II transcription with pre-mRNA processing. Curr Opin Cell Biol 11, 347-351. - PubMed
  133. Maniatis T & Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416, 499-506. - PubMed
  134. Hirose Y & Manley JL (2000) RNA polymerase II and the integration of nuclear events. Genes Dev 14, 1415-1429. - PubMed
  135. Hollander D, Naftelberg S, Lev-Maor G, Kornblihtt AR & Ast G (2016) How are short exons flanked by long introns defined and committed to splicing? Trends Genet 32, 596-606. - PubMed
  136. Naftelberg S, Schor IE, Ast G & Kornblihtt AR (2015) Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 84, 165-198. - PubMed
  137. Moore MJ & Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688-700. - PubMed
  138. Proudfoot NJ (2016) Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926. - PubMed
  139. Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A & Choder M (2011) Promoter elements regulate cytoplasmic mRNA decay. Cell 147, 1473-1483. - PubMed
  140. Pascual-Garcia P & Capelson M (2021) The nuclear pore complex and the genome: organizing and regulatory principles. Curr Opin Genet Dev 67, 142-150. - PubMed
  141. Eaton JD, Francis L, Davidson L & West S (2020) A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. Genes Dev 34, 132-145. - PubMed
  142. Haimovich G, Medina DA, Causse SZ, Garber M, Millán-Zambrano G, Barkai O, Chávez S, Pérez-Ortín JE, Darzacq X & Choder M (2013) Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 153, 1000-1011. - PubMed
  143. Dahmus ME (1996) [17] Phosphorylation of mammalian RNA polymerase II. Methods Enzymol 273, 185-193. - PubMed
  144. Weeks JR, Hardin SE, Shen J, Lee JM & Greenleaf AL (1993) Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Genes Dev 7, 2329-2344. - PubMed
  145. Hsin J-P & Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26, 2119-2137. - PubMed
  146. Corden JL (2013) RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem Rev 113, 8423-8455. - PubMed
  147. Conaway RC & Conaway JW (2015) Orchestrating transcription with the pol II CTD. Nat Rev Mol Cell Biol 16, 128. - PubMed
  148. Goodrich J & Taatjes D (2018) Transcription regulation enters a new phase. Nature 558, 197-198. - PubMed
  149. Cook PR & Marenduzzo D (2018) Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Res 46, 9895-9906. - PubMed
  150. Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X et al. (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555. - PubMed
  151. Plys AJ & Kingston RE (2018) Dynamic condensates activate transcription. Science 361, 329-330. - PubMed
  152. Cramer P (2019) Organization and regulation of gene transcription. Nature 573, 45-54. - PubMed
  153. Metzl-Raz E, Kafri M, Yaakov G & Barkai N (2020) Gene transcription as a limiting factor in protein production and cell growth. G3: Genes - Genomes - Genetics 10, 3229-3242. - PubMed
  154. Dieci G, Bosio MC, Fermi B & Ferrari R (2013) Transcription reinitiation by RNA polymerase III. Biochim Biophys Acta Gene Regul Mech 1829, 331-341. - PubMed
  155. Čabart P, Lee J & Willis IM (2008) Facilitated recycling protects human RNA polymerase III from repression by Maf1 in Vitro*. J Biol Chem 283, 36108-36117. - PubMed
  156. Tan-Wong SM, Zaugg JB, Camblong J, Xu Z, Zhang DW, Mischo HE, Ansari AZ, Luscombe NM, Steinmetz LM & Proudfoot NJ (2012) Gene loops enhance transcriptional directionality. Science 338, 671-675. - PubMed
  157. Ikegami K & Lieb JD (2013) Integral nuclear pore proteins bind to Pol III-transcribed genes and are required for Pol III transcript processing in C. elegans. Mol Cell 51, 840-849. - PubMed
  158. Mungall AJ, Palmer SA, Sims SK, Edwards CA, Ashurst JL, Wilming L, Jones MC, Horton R, Hunt SE, Scott CE et al. (2003) The DNA sequence and analysis of human chromosome 6. Nature 425, 805-811. - PubMed
  159. Darrow EM & Chadwick BP (2014) A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Res 42, 6421-6435. - PubMed
  160. Sullivan GJ (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20, 2867-2877. - PubMed
  161. Baillat D, Hakimi M-A, Näär AM, Shilatifard A, Cooch N & Shiekhattar R (2005) Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265-276. - PubMed
  162. Shah N, Maqbool MA, Yahia Y, El Aabidine AZ, Esnault C, Forné I, Decker T-M, Martin D, Schüller R, Krebs S et al. (2018) Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals. Mol Cell 69, 48-61.e6. - PubMed
  163. Grzechnik P, Szczepaniak SA, Dhir S, Pastucha A, Parslow H, Matuszek Z, Mischo HE, Kufel J & Proudfoot NJ (2018) Nuclear fate of yeast snoRNA is determined by co-transcriptional Rnt1 cleavage. Nat Commun 9, 1783. - PubMed
  164. Kufel J, Allmang C, Chanfreau G, Petfalski E, Lafontaine DLJ & Tollervey D (2000) Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by la binding. Mol Cell Biol 20, 5415-5424. - PubMed

Publication Types

Grant support