Display options
Share it on

Heart Rhythm. 2021 Aug;18(8):1406-1413. doi: 10.1016/j.hrthm.2021.04.026. Epub 2021 Apr 29.

Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart.

Heart rhythm

Michele Orini, Peter Taggart, Anish Bhuva, Neil Roberts, Carmelo Di Salvo, Martin Yates, Sveeta Badiani, Stefan Van Duijvenboden, Guy Lloyd, Andrew Smith, Pier D Lambiase

Affiliations

  1. Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
  2. Institute of Cardiovascular Science, University College London, London, United Kingdom. Electronic address: [email protected].
  3. Electrophysiology Department, Barts Heart Centre at St. Bartholomew's Hospital, London, United Kingdom.
  4. Institute of Cardiovascular Science, University College London, London, United Kingdom.

PMID: 33932588 PMCID: PMC8353585 DOI: 10.1016/j.hrthm.2021.04.026

Abstract

BACKGROUND: Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear.

OBJECTIVE: The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology.

METHODS: In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models.

RESULTS: Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01-0.38] ms/%; P = .04) and increased local ARI dispersion (effect size -0.13 [-0.23 to -0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01).

CONCLUSION: Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.

Copyright © 2021 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

Keywords: Arrhythmia; Cardiac strain; Electromechanical coupling; Mechanoelectric feedback; Repolarization

References

  1. Ann N Y Acad Sci. 2008 Mar;1123:58-63 - PubMed
  2. J Am Coll Cardiol. 2010 Mar 23;55(12):1217-1226 - PubMed
  3. Science. 2011 Sep 9;333(6048):1440-5 - PubMed
  4. Circ Res. 1982 Jun;50(6):757-66 - PubMed
  5. Heart Rhythm. 2009 Apr;6(4):537-43 - PubMed
  6. Ann Biomed Eng. 2019 May;47(5):1291-1299 - PubMed
  7. Prog Biophys Mol Biol. 1999;71(1):91-138 - PubMed
  8. Cardiovasc Res. 1989 Mar;23(3):213-23 - PubMed
  9. Cardiovasc Res. 2015 Oct 1;108(1):181-7 - PubMed
  10. Prog Biophys Mol Biol. 1999;71(1):139-54 - PubMed
  11. Circulation. 1998 Dec 15;98(24):2774-80 - PubMed
  12. J Am Soc Echocardiogr. 2015 Feb;28(2):183-93 - PubMed
  13. Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1099-105 - PubMed
  14. Prog Biophys Mol Biol. 2017 Nov;130(Pt B):365-375 - PubMed
  15. Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):3-9 - PubMed
  16. Circ Res. 2016 Jan 22;118(2):311-29 - PubMed
  17. Clin Med Insights Cardiol. 2017 Feb 02;11:1179546816686061 - PubMed
  18. Heart Rhythm. 2016 Sep;13(9):1898-904 - PubMed
  19. Prog Biophys Mol Biol. 2014 Aug;115(2-3):252-60 - PubMed
  20. J Cardiovasc Electrophysiol. 2018 Jul;29(7):990-997 - PubMed
  21. JACC Cardiovasc Imaging. 2010 Mar;3(3):247-56 - PubMed
  22. Circ Res. 2009 Mar 27;104(6):787-95 - PubMed
  23. Physiol Rev. 2021 Jan 1;101(1):37-92 - PubMed
  24. Can J Cardiol. 1998 Jan;14(1):111-9 - PubMed
  25. Prog Biophys Mol Biol. 2016 Jan;120(1-3):249-54 - PubMed
  26. JACC Cardiovasc Imaging. 2020 Feb;13(2 Pt 2):604-612 - PubMed
  27. Heart Rhythm. 2015 Oct;12(10):2172-83 - PubMed
  28. Br Heart J. 1992 Mar;67(3):221-9 - PubMed
  29. Front Physiol. 2018 Oct 16;9:1453 - PubMed
  30. Circ Arrhythm Electrophysiol. 2019 Nov;12(11):e007733 - PubMed
  31. JACC Cardiovasc Imaging. 2013 Aug;6(8):841-50 - PubMed
  32. Circulation. 2019 Sep 10;140(11):952-964 - PubMed
  33. Circulation. 1983 Jun;67(6):1356-67 - PubMed
  34. PLoS One. 2016 Sep 02;11(9):e0161765 - PubMed
  35. Am J Physiol. 1992 Sep;263(3 Pt 2):H816-23 - PubMed

Publication Types

Grant support