Display options
Share it on

Domest Anim Endocrinol. 2021 Oct;77:106632. doi: 10.1016/j.domaniend.2021.106632. Epub 2021 May 02.

Maternal nutrient restriction alters thyroid hormone dynamics in placentae of sheep having small for gestational age fetuses.

Domestic animal endocrinology

C B Steinhauser, K Askelson, K C Hobbs, F W Bazer, M C Satterfield

Affiliations

  1. Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843.
  2. Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843. Electronic address: [email protected].

PMID: 34062290 PMCID: PMC8380679 DOI: 10.1016/j.domaniend.2021.106632

Abstract

Thyroid hormones regulate a multitude of metabolic and cellular processes involved in placental and fetal growth, while maternal nutrient restriction (NR) has the potential to influence these processes. Those fetuses most impacted by NR, as categorized by weight, are termed small for gestational age (SGA), but the role of thyroid hormones in these pregnancies is not fully understood. Therefore, the aims of the present study were to determine effects of NR during pregnancy on maternal and fetal thyroid hormone concentrations, as well as temporal and cell-specific expression of mRNAs and proteins for placental thyroid hormone transporters, thyroid hormone receptors, and deiodinases in ewes having either SGA or normal weight fetuses. Ewes with singleton pregnancies were fed either a 100% NRC (n = 8) or 50% NRC (NR; n = 28) diet from Days 35 to 135 of pregnancy with a single placentome surgically collected on Day 70. Fetal weight at necropsy on Day 135 was used to designate the fetuses as NR NonSGA (n = 7; heaviest NR fetuses) or NR SGA (n = 7; lightest NR fetuses). Thyroid hormone levels were lower in NR SGA compared to NR NonSGA ewes, while all NR fetuses had lower concentrations of thyroxine at Day 135. Expression of mRNAs for thyroid hormone transporters SLC16A2, SLC16A10, SLCO1C1, and SLCO4A1 were altered by day, but not nutrient restriction. Expression of THRA mRNA and protein was dysregulated in NR SGA fetuses with protein localized to syncytial and stromal cells in placentomes in all groups. The ratio of deiodinases DIO2 and DIO3 was greater for NR SGA placentae at Day 70, while DIO3 protein was less abundant in placentae from NR SGA than 100% NRC ewes. These results identify mid-gestational modifications in thyroid hormone-associated proteins in placentomes of ewes having SGA fetuses, as well as a potential for placentomes from NonSGA pregnancies to adapt to, and overcome, nutritional restrictions during pregnancy.

Copyright © 2021. Published by Elsevier Inc.

Keywords: Deiodinase; Placenta; Pregnancy; Small for gestational age; Thyroid hormone; Thyroid hormone receptor

Conflict of interest statement

Declaration of Competing Interest None.

References

  1. J Anim Sci. 2010 Mar;88(3):955-71 - PubMed
  2. Thyroid. 2020 Aug;30(8):1193-1204 - PubMed
  3. Thyroid. 2021 Jun;31(6):861-869 - PubMed
  4. J Mol Endocrinol. 2001 Feb;26(1):67-77 - PubMed
  5. Endocrinology. 2006 Dec;147(12):5988-94 - PubMed
  6. Am J Physiol Endocrinol Metab. 2000 Jun;278(6):E1166-74 - PubMed
  7. J Endocrinol. 2011 Aug;210(2):189-98 - PubMed
  8. Endocrinology. 2007 Feb;148(2):800-5 - PubMed
  9. Methods Mol Biol. 2018;1801:1-8 - PubMed
  10. J Endocrinol. 2020 Dec;247(3):251-262 - PubMed
  11. J Nutr. 2010 Jul;140(7):1242-8 - PubMed
  12. Am J Physiol Regul Integr Comp Physiol. 2005 Oct;289(4):R1006-14 - PubMed
  13. Placenta. 2010 Apr;31(4):295-304 - PubMed
  14. J Endocrinol. 1971 Mar;49(3):549-50 - PubMed
  15. Trends Endocrinol Metab. 2011 May;22(5):164-70 - PubMed
  16. Endocrinology. 1972 May;90(5):1301-8 - PubMed
  17. Br J Nutr. 1998 Apr;79(4):359-64 - PubMed
  18. Endocrinology. 1978 Oct;103(4):1453-7 - PubMed
  19. J Anim Sci. 2006 Sep;84(9):2316-37 - PubMed
  20. J Clin Endocrinol Metab. 2018 Dec 1;103(12):4437-4446 - PubMed
  21. Biol Reprod. 2021 Jan 4;104(1):170-180 - PubMed
  22. Domest Anim Endocrinol. 2020 Jul;72:106443 - PubMed
  23. Placenta. 2020 Jul;96:1-9 - PubMed
  24. J Clin Endocrinol Metab. 2013 Jan;98(1):59-66 - PubMed
  25. Curr Opin Clin Nutr Metab Care. 2013 Jul;16(4):385-91 - PubMed
  26. Exp Physiol. 2013 Mar;98(3):722-33 - PubMed
  27. Acta Endocrinol (Copenh). 1991 Jul;125(1):58-66 - PubMed
  28. Domest Anim Endocrinol. 2021 Jan;74:106556 - PubMed
  29. Am J Physiol. 1988 Mar;254(3 Pt 1):E337-41 - PubMed
  30. Mol Cell Endocrinol. 1999 Mar 25;149(1-2):107-14 - PubMed
  31. Best Pract Res Clin Endocrinol Metab. 2007 Jun;21(2):209-21 - PubMed
  32. Methods Mol Biol. 2015;1295:381-91 - PubMed
  33. Int J Mol Sci. 2020 Jun 05;21(11): - PubMed
  34. Am J Physiol Regul Integr Comp Physiol. 2021 Feb 1;320(2):R138-R148 - PubMed
  35. J Clin Endocrinol Metab. 1990 Aug;71(2):276-87 - PubMed
  36. J Anim Sci Biotechnol. 2015 Apr 11;6(1):16 - PubMed
  37. J Endocrinol. 2014 Jun;221(3):R87-R103 - PubMed
  38. J Anim Sci Biotechnol. 2020 May 14;11:48 - PubMed
  39. Early Hum Dev. 2009 Oct;85(10):653-8 - PubMed
  40. Mol Endocrinol. 2002 Jan;16(1):24-32 - PubMed
  41. J Clin Endocrinol Metab. 1996 Jun;81(6):2247-9 - PubMed
  42. J Clin Endocrinol Metab. 1998 Aug;83(8):2964-71 - PubMed
  43. PLoS One. 2014 Apr 24;9(4):e96047 - PubMed
  44. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10332-7 - PubMed
  45. J Endocrinol. 2018 Jun;237(3):301-310 - PubMed

Publication Types

Grant support