Display options
Share it on

Curr Biol. 2021 May 24;31(10):R560-R573. doi: 10.1016/j.cub.2021.02.035.

Molecular mechanisms underlying microtubule growth dynamics.

Current biology : CB

Joseph M Cleary, William O Hancock

Affiliations

  1. Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
  2. Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: [email protected].

PMID: 34033790 PMCID: PMC8575376 DOI: 10.1016/j.cub.2021.02.035

Abstract

Microtubules are dynamic cytoskeletal filaments composed of αβ-tubulin heterodimers. Historically, the dynamics of single tubulin interactions at the growing microtubule tip have been inferred from steady-state growth kinetics. However, recent advances in the production of recombinant tubulin and in high-resolution optical and cryo-electron microscopies have opened new windows into understanding the impacts of specific intermolecular interactions during growth. The microtubule lattice is held together by lateral and longitudinal tubulin-tubulin interactions, and these interactions are in turn regulated by the GTP hydrolysis state of the tubulin heterodimer. Furthermore, tubulin can exist in either an extended or a compacted state in the lattice. Growing evidence has led to the suggestion that binding of microtubule-associated proteins (MAPs) or motors can induce changes in tubulin conformation and that this information can be communicated through the microtubule lattice. Progress in understanding how dynamic tubulin-tubulin interactions control dynamic instability has benefitted from visualizing structures of growing microtubule plus ends and through stochastic biochemical models constrained by experimental data. Here, we review recent insights into the molecular basis of microtubule growth and discuss how MAPs and regulatory proteins alter tubulin-tubulin interactions to exert their effects on microtubule growth and stability.

Copyright © 2021 Elsevier Inc. All rights reserved.

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

  1. Biophys J. 2000 Apr;78(4):1955-64 - PubMed
  2. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5772-6 - PubMed
  3. Science. 2018 Apr 27;360(6387):423-427 - PubMed
  4. Cell. 2009 Jul 23;138(2):366-76 - PubMed
  5. Elife. 2015 Jul 24;4: - PubMed
  6. J Cell Biol. 1995 Jun;129(5):1311-28 - PubMed
  7. J Cell Sci. 2012 Jun 1;125(Pt 11):2561-9 - PubMed
  8. Nat Commun. 2020 Jul 28;11(1):3765 - PubMed
  9. Cytoskeleton (Hoboken). 2016 Oct;73(10):521-550 - PubMed
  10. J Biol Chem. 2016 Apr 22;291(17):9281-94 - PubMed
  11. PLoS One. 2008;3(11):e3821 - PubMed
  12. Nat Struct Mol Biol. 2018 Jul;25(7):607-615 - PubMed
  13. Elife. 2014 Aug 05;3:e03069 - PubMed
  14. Curr Biol. 2016 Dec 19;26(24):3399-3406 - PubMed
  15. Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6191-E6200 - PubMed
  16. Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7314-7322 - PubMed
  17. Nat Phys. 2019 Aug;15(8):830-838 - PubMed
  18. J Cell Biol. 2018 Aug 6;217(8):2691-2708 - PubMed
  19. Dev Cell. 2018 Oct 22;47(2):175-190.e5 - PubMed
  20. Mol Biol Cell. 2016 Nov 7;27(22):3515-3525 - PubMed
  21. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6728-32 - PubMed
  22. J Mol Biol. 2001 Nov 9;313(5):1045-57 - PubMed
  23. Elife. 2020 Mar 10;9: - PubMed
  24. Nat Struct Mol Biol. 2017 Nov;24(11):931-943 - PubMed
  25. Mol Biol Cell. 2012 Feb;23(4):642-56 - PubMed
  26. iScience. 2020 Aug 29;23(9):101511 - PubMed
  27. J Cell Biol. 2007 Mar 26;176(7):995-1005 - PubMed
  28. Nat Cell Biol. 2016 Oct;18(10):1054-1064 - PubMed
  29. Nat Methods. 2007 Oct;4(10):843-6 - PubMed
  30. Curr Biol. 2020 Jun 8;30(11):2175-2183.e6 - PubMed
  31. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1131-5 - PubMed
  32. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5533-5541 - PubMed
  33. Dev Cell. 2010 Aug 17;19(2):245-58 - PubMed
  34. Mol Biol Cell. 2019 Jun 1;30(12):1451-1462 - PubMed
  35. Mol Biol Cell. 2020 Mar 19;31(7):589-618 - PubMed
  36. Curr Biol. 2014 Feb 17;24(4):372-84 - PubMed
  37. Nat Commun. 2014;5:3094 - PubMed
  38. Nat Cell Biol. 2016 Oct;18(10):1102-8 - PubMed
  39. PLoS One. 2009 Oct 23;4(10):e7585 - PubMed
  40. Mol Biol Cell. 2017 Dec 1;28(25):3564-3572 - PubMed
  41. Cell. 1999 Jan 8;96(1):79-88 - PubMed
  42. J Microsc. 2018 Oct;272(1):60-66 - PubMed
  43. Science. 1993 Aug 20;261(5124):1044-7 - PubMed
  44. Nat Cell Biol. 2015 Jul;17(7):907-16 - PubMed
  45. J Cell Biol. 1995 Jan;128(1-2):117-25 - PubMed
  46. Cell. 2011 Aug 19;146(4):582-92 - PubMed
  47. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11358-62 - PubMed
  48. Nat Struct Mol Biol. 2019 Aug;26(8):671-678 - PubMed
  49. Curr Biol. 2013 Jul 22;23(14):1342-8 - PubMed
  50. Trends Cell Biol. 2015 Dec;25(12):769-779 - PubMed
  51. Elife. 2016 Apr 06;5: - PubMed
  52. Nat Mater. 2020 Mar;19(3):355-365 - PubMed
  53. Science. 2018 Aug 24;361(6404): - PubMed
  54. J Mol Biol. 2011 Sep 9;412(1):35-42 - PubMed
  55. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):572-584 - PubMed
  56. Curr Biol. 2007 Sep 4;17(17):1445-55 - PubMed
  57. Nat Mater. 2021 Jun;20(6):883-891 - PubMed
  58. Nat Rev Mol Cell Biol. 2020 Jun;21(6):307-326 - PubMed
  59. J Cell Biol. 2018 Dec 3;217(12):4164-4183 - PubMed
  60. Biophys J. 2013 Dec 3;105(11):2528-40 - PubMed
  61. Nat Rev Mol Cell Biol. 2018 Jul;19(7):451-463 - PubMed
  62. Nature. 1984 Nov 15-21;312(5991):237-42 - PubMed
  63. J Microsc. 2016 Jan;261(1):67-78 - PubMed
  64. Biophys J. 2015 Dec 15;109(12):2574-2591 - PubMed
  65. Nat Mater. 2015 Nov;14(11):1156-63 - PubMed
  66. J Cell Biol. 2018 Aug 6;217(8):2609-2611 - PubMed
  67. Elife. 2018 Jun 13;7: - PubMed
  68. Nature. 1995 Dec 7;378(6557):578-83 - PubMed
  69. Mol Biol Cell. 1992 Oct;3(10):1155-67 - PubMed
  70. Science. 1994 May 6;264(5160):839-42 - PubMed
  71. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5860-5 - PubMed
  72. Biochemistry. 2011 Oct 11;50(40):8636-44 - PubMed
  73. Nature. 2007 Dec 13;450(7172):1100-5 - PubMed
  74. Annu Rev Cell Biol. 1988;4:687-716 - PubMed
  75. J Cell Biol. 2019 Sep 2;218(9):2841-2853 - PubMed
  76. Bioessays. 2013 May;35(5):452-61 - PubMed
  77. Biophys J. 2019 Jun 18;116(12):2240-2245 - PubMed
  78. Cell Mol Bioeng. 2011 Jun;4(2):192-204 - PubMed
  79. Elife. 2020 Jun 15;9: - PubMed
  80. Cell. 2014 May 22;157(5):1117-29 - PubMed
  81. Nat Nanotechnol. 2018 May;13(5):386-391 - PubMed
  82. Dev Cell. 2018 Oct 22;47(2):191-204.e8 - PubMed
  83. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5378-83 - PubMed
  84. Dev Cell. 2020 Jul 6;54(1):7-20 - PubMed
  85. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16976-16984 - PubMed
  86. Curr Biol. 2019 Jul 22;29(14):2259-2269.e4 - PubMed
  87. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6035-40 - PubMed
  88. Curr Biol. 2015 Feb 16;25(4):R162-71 - PubMed
  89. J Cell Biol. 1973 Nov;59(2 Pt 1):267-75 - PubMed
  90. Curr Biol. 2014 Oct 20;24(20):2366-75 - PubMed
  91. J Cell Biol. 1975 Apr;65(1):227-33 - PubMed
  92. Biophys J. 2005 Nov;89(5):2911-26 - PubMed
  93. J Cell Biol. 1988 Oct;107(4):1437-48 - PubMed
  94. Curr Opin Cell Biol. 2006 Apr;18(2):179-84 - PubMed
  95. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3427-3432 - PubMed
  96. Nature. 2005 Jun 16;435(7044):911-5 - PubMed
  97. Nature. 1984 Nov 15-21;312(5991):232-7 - PubMed
  98. J Cell Biol. 1986 Mar;102(3):1067-73 - PubMed
  99. Biophys J. 2016 Jan 5;110(1):214-7 - PubMed
  100. Sci Rep. 2020 Aug 12;10(1):13661 - PubMed
  101. Elife. 2020 Feb 13;9: - PubMed
  102. J Cell Biol. 1991 Sep;114(5):977-91 - PubMed
  103. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5372-6 - PubMed
  104. Biophys J. 2011 Jun 8;100(11):2820-8 - PubMed
  105. J Cell Biol. 1994 Dec;127(6 Pt 2):1965-71 - PubMed
  106. J Biol Chem. 1984 Aug 25;259(16):10430-8 - PubMed
  107. J Mol Biol. 2000 May 12;298(4):663-76 - PubMed
  108. J Mol Biol. 2005 May 13;348(4):927-38 - PubMed
  109. Nature. 2006 Aug 10;442(7103):709-12 - PubMed

Publication Types

Grant support