Display options
Share it on

Mol Cancer. 2021 Jun 06;20(1):86. doi: 10.1186/s12943-021-01370-2.

Germinal epimutation of Fragile Histidine Triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases.

Molecular cancer

Marcia Bellon, Izabela Bialuk, Veronica Galli, Xue-Tao Bai, Lourdes Farre, Achilea Bittencourt, Ambroise Marçais, Michael N Petrus, Lee Ratner, Thomas A Waldmann, Vahid Asnafi, Antoine Gessain, Masao Matsuoka, Genoveffa Franchini, Olivier Hermine, Toshiki Watanabe, Christophe Nicot

Affiliations

  1. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
  2. Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  3. Comprehensive Cancer Center, Department of Health Sciences, Ohio State University, Columbus, OH, USA.
  4. Program in Molecular Mechanisms and Experimental Therapy in Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
  5. Department of Pathology, Prof. Edgard Santos Teaching Hospital, Federal University of Bahia, Salvador, Bahia, Brazil.
  6. Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France.
  7. Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  8. Division of Oncology, Department of Medicine, Washington University, St Louis, MO, USA.
  9. Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151 Laboratoire Onco-Hematology, Paris, France.
  10. Unité d'épidémiologie et de Physiopathologie des virus Oncogene, Institut Pasteur, 75015, Paris, France.
  11. Centre National de la Recherche Scientifique (CNRS) UMR 3569, 75015, Paris, France.
  12. Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
  13. Department of Hematology, Rheumatology, and Infectious Disease, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
  14. Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
  15. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA. [email protected].

PMID: 34092254 PMCID: PMC8183032 DOI: 10.1186/s12943-021-01370-2

Abstract

BACKGROUND: Human T cell Leukemia virus type 1 (HTLV-I) is etiologically linked to adult T cell leukemia/lymphoma (ATL) and an inflammatory neurodegenerative disease called HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP). The exact genetic or epigenetic events and/or environmental factors that influence the development of ATL, or HAM/TSP diseases are largely unknown. The tumor suppressor gene, Fragile Histidine Triad Diadenosine Triphosphatase (FHIT), is frequently lost in cancer through epigenetic modifications and/or deletion. FHIT is a tumor suppressor acting as genome caretaker by regulating cellular DNA repair. Indeed, FHIT loss leads to replicative stress and accumulation of double DNA strand breaks. Therefore, loss of FHIT expression plays a key role in cellular transformation.

METHODS: Here, we studied over 400 samples from HTLV-I-infected individuals with ATL, TSP/HAM, or asymptomatic carriers (AC) for FHIT loss and expression. We examined the epigenetic status of FHIT through methylation specific PCR and bisulfite sequencing; and correlated these results to FHIT expression in patient samples.

RESULTS: We found that epigenetic alteration of FHIT is specifically found in chronic and acute ATL but is absent in asymptomatic HTLV-I carriers and TSP/HAM patients' samples. Furthermore, the extent of FHIT methylation in ATL patients was quantitatively comparable in virus-infected and virus non-infected cells. We also found that longitudinal HTLV-I carriers that progressed to smoldering ATL and descendants of ATL patients harbor FHIT methylation.

CONCLUSIONS: These results suggest that germinal epigenetic mutation of FHIT represents a preexisting mark predisposing to the development of ATL diseases. These findings have important clinical implications as patients with acute ATL are rarely cured. Our study suggests an alternative strategy to the current "wait and see approach" in that early screening of HTLV-I-infected individuals for germinal epimutation of FHIT and early treatment may offer significant clinical benefits.

Keywords: ATL; ATLL; Cancer; Epigenetic; Epimutation; FHIT; HAM; HTLV-1; Leukemia; Lymphoma; Methylation; TSP; TSP/HAM; Tax

References

  1. J Virol. 2010 Jul;84(14):6966-77 - PubMed
  2. Lancet Oncol. 2014 Oct;15(11):e517-26 - PubMed
  3. Ann Clin Lab Sci. 2010 Summer;40(3):267-72 - PubMed
  4. Genome Biol. 2017 Mar 10;18(1):50 - PubMed
  5. PLoS Genet. 2012;8(11):e1003077 - PubMed
  6. Blood. 2006 Aug 1;108(3):1021-9 - PubMed
  7. Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1269-E1278 - PubMed
  8. Am J Pathol. 2010 Jan;176(1):402-15 - PubMed
  9. Blood. 2017 Mar 2;129(9):1071-1081 - PubMed
  10. Blood. 2016 May 19;127(20):2439-50 - PubMed
  11. Blood. 2010 Aug 26;116(8):1211-9 - PubMed
  12. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11685-11691 - PubMed
  13. Oncotarget. 2017 Nov 6;8(60):102199-102211 - PubMed
  14. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20344-9 - PubMed
  15. Nat Commun. 2019 Mar 27;10(1):1383 - PubMed
  16. Blood Adv. 2017 Jun 27;1(15):1195-1205 - PubMed
  17. J Clin Oncol. 2010 Sep 20;28(27):4177-83 - PubMed
  18. Leukemia. 2006 Feb;20(2):264-71 - PubMed
  19. Blood. 2018 Oct 4;132(14):1507-1518 - PubMed
  20. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3615-20 - PubMed
  21. Blood. 2015 Jun 4;125(23):3527-35 - PubMed
  22. Oncol Lett. 2012 Jan;3(1):190-192 - PubMed
  23. Exp Cell Res. 2006 Aug 1;312(13):2433-42 - PubMed
  24. Leukemia. 2005 Aug;19(8):1367-75 - PubMed
  25. Blood. 2010 Jun 3;115(22):4337-43 - PubMed
  26. PLoS One. 2012;7(8):e42226 - PubMed
  27. Eur J Cancer. 2002 Mar;38(5):728-35 - PubMed
  28. Nat Genet. 2017 Jan;49(1):131-138 - PubMed
  29. Nat Rev Cancer. 2001 Dec;1(3):214-21 - PubMed
  30. Cytogenet Genome Res. 2016;150(3-4):208-216 - PubMed
  31. Oncogene. 2015 Apr 16;34(16):2072-82 - PubMed
  32. Leukemia. 2021 Mar;35(3):764-776 - PubMed
  33. Lancet. 1985 Aug 24;2(8452):407-10 - PubMed
  34. Cancer Sci. 2008 Jan;99(1):98-106 - PubMed
  35. Blood. 2020 Jun 4;135(23):2023-2032 - PubMed
  36. Annu Rev Genet. 1998;32:7-31 - PubMed
  37. Blood. 2020 Aug 13;136(7):871-884 - PubMed
  38. Genes Chromosomes Cancer. 2019 May;58(5):317-323 - PubMed
  39. Oncogene. 2004 Dec 2;23(56):9102-10 - PubMed
  40. Mol Cancer. 2014 Sep 04;13:205 - PubMed
  41. J Clin Oncol. 2019 Mar 10;37(8):677-687 - PubMed
  42. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7415-9 - PubMed
  43. Front Microbiol. 2016 Oct 28;7:1674 - PubMed
  44. Carcinogenesis. 2004 Nov;25(11):2165-71 - PubMed
  45. Blood. 2006 Mar 15;107(6):2493-500 - PubMed
  46. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3845-50 - PubMed
  47. Blood. 2015 Dec 10;126(24):2570-7 - PubMed
  48. Genome Biol. 2014 May 29;15(5):R73 - PubMed
  49. Virology. 1985 Oct 30;146(2):272-81 - PubMed
  50. Cancer Biother Radiopharm. 2011 Jun;26(3):365-72 - PubMed
  51. J Clin Oncol. 2009 Jan 20;27(3):453-9 - PubMed
  52. Front Microbiol. 2019 May 08;10:999 - PubMed
  53. J Oncol. 2015;2015:183590 - PubMed
  54. Blood Adv. 2020 Mar 24;4(6):1062-1071 - PubMed
  55. Nat Genet. 2015 Nov;47(11):1304-15 - PubMed
  56. Eur J Haematol. 2005 Dec;75(6):505-10 - PubMed
  57. Cancer Res. 2004 Mar 15;64(6):2000-6 - PubMed
  58. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10250-5 - PubMed
  59. ScientificWorldJournal. 2010 Jun 16;10:1142-51 - PubMed
  60. Oncogene. 2006 May 11;25(20):2860-72 - PubMed
  61. Future Oncol. 2008 Dec;4(6):815-24 - PubMed
  62. Mol Ther. 2020 Apr 8;28(4):1105-1118 - PubMed

Publication Types

Grant support