Display options
Share it on

JHEP Rep. 2021 Mar 21;3(3):100281. doi: 10.1016/j.jhepr.2021.100281. eCollection 2021 Jun.

A human liver chimeric mouse model for non-alcoholic fatty liver disease.

JHEP reports : innovation in hepatology

Beatrice Bissig-Choisat, Michele Alves-Bezerra, Barry Zorman, Scott A Ochsner, Mercedes Barzi, Xavier Legras, Diane Yang, Malgorzata Borowiak, Adam M Dean, Robert B York, N Thao N Galvan, John Goss, William R Lagor, David D Moore, David E Cohen, Neil J McKenna, Pavel Sumazin, Karl-Dimiter Bissig

Affiliations

  1. Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA.
  2. Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
  3. Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
  4. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
  5. Institute for Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz Universtiy, Poznan, Poland.
  6. Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
  7. Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
  8. Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC, USA.
  9. Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA.
  10. Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
  11. Duke Cancer Institute, Duke University, Durham, NC, USA.

PMID: 34036256 PMCID: PMC8138774 DOI: 10.1016/j.jhepr.2021.100281

Abstract

BACKGROUND & AIMS: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease (NAFLD), which affects a quarter of the world's population and is associated with hepatitis, cirrhosis, and hepatocellular carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model.

METHODS: We generated TIRF (transgene-free

RESULTS: Within the same chimeric liver, human hepatocytes developed pronounced steatosis whereas murine hepatocytes remained normal. Unbiased metabolomics and lipidomics revealed signatures of clinical NAFLD. Transcriptomic analyses showed that molecular responses diverged sharply between murine and human hepatocytes, demonstrating stark species differences in liver function. Regulatory network analysis indicated close agreement between our model and clinical NAFLD with respect to transcriptional control of cholesterol biosynthesis.

CONCLUSIONS: These NAFLD xenograft mice reveal an unexpected degree of evolutionary divergence in food metabolism and offer a physiologically relevant, experimentally tractable model for studying the pathogenic changes invoked by steatosis.

LAY SUMMARY: Fatty liver disease is an emerging health problem, and as there are no good experimental animal models, our understanding of the condition is poor. We here describe a novel humanised mouse system and compare it with clinical data. The results reveal that the human cells in the mouse liver develop fatty liver disease upon a Western-style fatty diet, whereas the mouse cells appear normal. The molecular signature (expression profiles) of the human cells are distinct from the mouse cells and metabolic analysis of the humanised livers mimic the ones observed in humans with fatty liver. This novel humanised mouse system can be used to study human fatty liver disease.

© 2021 The Author(s).

Keywords: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CBPEGs, cholesterol biosynthesis pathway enzyme genes; CE, cholesteryl ester; CER, ceramide; CHHs, chimeric human hepatocytes; CMHs, chimeric mouse hepatocytes; CT, confidence transcript; DAG, diacylglycerol; DCER, dihydroceramide; DEG, differentially expressed gene; FA, fatty acid; FAH, fumarylacetoacetate hydrolase; FFA, free fatty acid; GGT, gamma-glutamyl transpeptidase; HCC, hepatocellular carcinoma; HCER, hexosylceramide; HCT, high confidence transcriptional target; Human disease modelling; Humanised mice; LCER, lactosylceramide; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; Lipid metabolism; MAG, monoacylglycerol; MUFA, monounsaturated fatty acid; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NC, normal chow; NTBC, nitisinone; Non-alcoholic fatty liver disease; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PNPLA3, patatin-like-phospholipase domain-containing protein 3; PUFA, polyunsaturated free FA; SM, sphingomyelin; SREBP, sterol regulatory element-binding protein; Steatosis; TAG, triacylglycerol; TIRF, transgene-free Il2rg-/-/Rag2-/-/Fah-/-; WD, Western-type diet; hALB, human albumin

Conflict of interest statement

The authors declare no personal or financial conflicts of interest. Please refer to the accompanying ICMJE disclosure forms for further details.

References

  1. Biochim Biophys Acta. 2015 Sep;1852(9):1765-78 - PubMed
  2. J Med Genet. 2014 Aug;51(8):537-44 - PubMed
  3. Obesity (Silver Spring). 2010 Jul;18(7):1460-3 - PubMed
  4. Ann Surg. 2007 Jun;245(6):923-30 - PubMed
  5. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20507-11 - PubMed
  6. Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):35-44 - PubMed
  7. PLoS One. 2011;6(8):e22775 - PubMed
  8. Biochim Biophys Acta. 2009 Nov;1792(11):1080-6 - PubMed
  9. J Clin Invest. 2010 Mar;120(3):924-30 - PubMed
  10. Compr Physiol. 2017 Dec 12;8(1):1-8 - PubMed
  11. Sci Data. 2019 Oct 31;6(1):252 - PubMed
  12. Sci Rep. 2017 Apr 24;7:46658 - PubMed
  13. Hepatology. 2015 May;61(5):1565-78 - PubMed
  14. Gastroenterology. 2016 Sep;151(3):513-525.e0 - PubMed
  15. Cell Metab. 2012 Jun 6;15(6):848-60 - PubMed
  16. Hepatology. 2007 Oct;46(4):1081-90 - PubMed
  17. Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189 - PubMed
  18. Hepatology. 2016 Jul;64(1):73-84 - PubMed
  19. Cell Mol Life Sci. 2019 Jan;76(1):99-128 - PubMed
  20. Nat Biotechnol. 2007 Aug;25(8):903-10 - PubMed
  21. Clin Nutr. 2019 Jun;38(3):975-981 - PubMed
  22. Free Radic Biol Med. 2004 Nov 1;37(9):1499-507 - PubMed
  23. Obesity (Silver Spring). 2017 Jun;25(6):1069-1076 - PubMed
  24. Nat Commun. 2015 Jun 17;6:7339 - PubMed
  25. Nutr Metab (Lond). 2016 Sep 26;13:62 - PubMed
  26. Cell. 1996 Apr 5;85(1):1-4 - PubMed
  27. Gastroenterology. 2015 Feb;148(2):307-23 - PubMed
  28. Nucleic Acids Res. 2016 Jan 4;44(D1):D481-7 - PubMed
  29. J Endocrinol. 2005 Oct;187(1):45-53 - PubMed
  30. Hum Gene Ther. 1994 Apr;5(4):449-56 - PubMed
  31. Cell Metab. 2012 May 2;15(5):665-74 - PubMed
  32. Cell Metab. 2016 Jan 12;23(1):48-62 - PubMed
  33. Clin Sci (Lond). 2004 Jun;106(6):635-43 - PubMed
  34. Clin Gastroenterol Hepatol. 2017 Apr;15(4):474-485 - PubMed
  35. PLoS One. 2013;8(2):e57165 - PubMed
  36. J Clin Invest. 2002 May;109(9):1125-31 - PubMed
  37. J Clin Transl Hepatol. 2018 Sep 28;6(3):332-338 - PubMed
  38. Obesity (Silver Spring). 2007 Jan;15(1):24-31 - PubMed
  39. BMC Med. 2019 Jul 17;17(1):135 - PubMed
  40. Nat Commun. 2017 Jun 28;8(1):39 - PubMed
  41. J Hepatol. 2016 May;64(5):1167-1175 - PubMed
  42. Nat Genet. 2008 Dec;40(12):1461-5 - PubMed
  43. Sci Transl Med. 2018 Apr 18;10(437): - PubMed
  44. Sci Transl Med. 2020 Dec 2;12(572): - PubMed
  45. Diabetes. 2021 Jan;70(1):214-226 - PubMed
  46. J Pharmacol Exp Ther. 2019 Jul;370(1):92-103 - PubMed
  47. Cell Metab. 2009 Jul;10(1):63-75 - PubMed
  48. Sci Data. 2020 Sep 22;7(1):314 - PubMed

Publication Types