Display options
Share it on

Front Physiol. 2021 May 28;12:588120. doi: 10.3389/fphys.2021.588120. eCollection 2021.

Transit Time Measurement in Indicator Dilution Curves: Overcoming the Missing Ground Truth and Quantifying the Error.

Frontiers in physiology

Ady Naber, Michael Reiß, Werner Nahm

Affiliations

  1. Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany.

PMID: 34122123 PMCID: PMC8194354 DOI: 10.3389/fphys.2021.588120

Abstract

The vascular function of a vessel can be qualitatively and intraoperatively checked by recording the blood dynamics inside the vessel via fluorescence angiography (FA). Although FA is the state of the art in proving the existence of blood flow during interventions such as bypass surgery, it still lacks a quantitative blood flow measurement that could decrease the recurrence rate and postsurgical mortality. Previous approaches show that the measured flow has a significant deviation compared to the gold standard reference (ultrasonic flow meter). In order to systematically address the possible sources of error, we investigated the error in transit time measurement of an indicator. Obtaining

Copyright © 2021 Naber, Reiß and Nahm.

Keywords: blood flow velocity; fluorescence angiography; indicator dilution curve; mathematical fits; sub-frame rate accuracy; transit time

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Bull Math Biol. 1975 Dec;37(6):573-88 - PubMed
  2. Ann Biomed Eng. 2011 Jul;39(7):1947-60 - PubMed
  3. Biomed Tech (Berl). 2013 Jun;58(3):269-79 - PubMed
  4. Anesth Analg. 2010 Mar 1;110(3):799-811 - PubMed
  5. J Neurosurg. 2018 Jun 1;:1-8 - PubMed
  6. IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1296-310 - PubMed
  7. J Cereb Blood Flow Metab. 2015 Mar 31;35(4):648-54 - PubMed
  8. J Neurosurg. 2019 May 1;130(5):1409-1425 - PubMed
  9. Neurosurgery. 2006 Apr;58(4 Suppl 2):ONS-305-12; discussion ONS-312 - PubMed
  10. J Biomech. 2005 Nov;38(11):2302-10 - PubMed
  11. J Appl Physiol (1985). 2012 Jan;112(1):225-36 - PubMed
  12. Int J Biomed Imaging. 2012;2012:940585 - PubMed
  13. Physiol Rep. 2017 Mar;5(6): - PubMed
  14. Bull Math Biophys. 1970 Mar;32(1):25-43 - PubMed
  15. Proc R Soc Med. 1974 Jun;67(6 Pt 1):447-9 - PubMed
  16. Microsurgery. 2011 Oct;31(7):559-63 - PubMed
  17. Comput Math Methods Med. 2017;2017:9295029 - PubMed
  18. Ann Biomed Eng. 2000 Aug;28(8):836-48 - PubMed
  19. Ann Nucl Med. 2006 Feb;20(2):99-106 - PubMed
  20. Am J Physiol. 1997 Apr;272(4 Pt 2):H2004-12 - PubMed
  21. Neurosurgery. 2012 Mar;70(1 Suppl Operative):65-73; discussion 73-4 - PubMed
  22. World Neurosurg. 2018 Aug;116:e187-e193 - PubMed
  23. J Neurosci. 1990 Aug;10(8):2493-501 - PubMed
  24. J Appl Physiol. 1967 Feb;22(2):327-32 - PubMed
  25. J Appl Physiol. 1954 Jun;6(12):731-44 - PubMed
  26. Physiol Meas. 2015 Sep;36(9):1827-52 - PubMed
  27. J Nucl Med. 1983 Oct;24(10):945-8 - PubMed
  28. Basic Res Cardiol. 1984 Jul-Aug;79(4):479-93 - PubMed
  29. Acta Neurochir (Wien). 2001;143(1):17-24 - PubMed
  30. Physiol Meas. 2008 Mar;29(3):281-94 - PubMed
  31. Acta Physiol Pharmacol Neerl. 1966;14(2):175-204 - PubMed
  32. Neurosurgery. 2003 Jan;52(1):132-9; discussion 139 - PubMed
  33. J Cereb Blood Flow Metab. 2016 Sep;36(9):1519-27 - PubMed
  34. Med Biol Eng Comput. 2011 Dec;49(12):1471-9 - PubMed
  35. Biophys J. 2001 Jun;80(6):2987-99 - PubMed
  36. Physiol Meas. 2015 Jul;36(7):1517-27 - PubMed
  37. Stroke. 1998 Dec;29(12):2622-30 - PubMed

Publication Types