Display options
Share it on

Front Physiol. 2021 May 28;12:681135. doi: 10.3389/fphys.2021.681135. eCollection 2021.

Regulation of Coronary Blood Flow by the Carotid Body Chemoreceptors in Ovine Heart Failure.

Frontiers in physiology

Mridula Pachen, Yonis Abukar, Julia Shanks, Nigel Lever, Rohit Ramchandra

Affiliations

  1. Department of Physiology, University of Auckland, Auckland, New Zealand.
  2. Department of Medicine, University of Auckland and Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand.

PMID: 34122147 PMCID: PMC8195281 DOI: 10.3389/fphys.2021.681135

Abstract

Carotid bodies (CBs) are peripheral chemoreceptors, which are primary sensors of systemic hypoxia and their activation produces respiratory, autonomic, and cardiovascular adjustments critical for body homeostasis. We have previously shown that carotid chemoreceptor stimulation increases directly recorded cardiac sympathetic nerve activity (cardiac SNA) which increases coronary blood flow (CoBF) in conscious normal sheep. Previous studies have shown that chemoreflex sensitivity is augmented in heart failure (HF). We hypothesized that carotid chemoreceptor stimulation would increase CoBF to a greater extent in HF than control sheep. Experiments were conducted in conscious HF sheep and control sheep (

Copyright © 2021 Pachen, Abukar, Shanks, Lever and Ramchandra.

Keywords: cardiorespiratory; carotid body; chemoreflex activation; coronary blood flow; heart failure; sympathetic nerve activity

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Circ Res. 1972 Jul;31(1):8-17 - PubMed
  2. Semin Cell Dev Biol. 2013 Jan;24(1):22-30 - PubMed
  3. Exp Physiol. 2014 May 1;99(5):743-58 - PubMed
  4. N Engl J Med. 1984 Sep 27;311(13):819-23 - PubMed
  5. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):924-8 - PubMed
  6. Anesthesiology. 1978 May;48(5):339-44 - PubMed
  7. J Physiol. 2014 Jan 15;592(2):391-408 - PubMed
  8. Eur Heart J. 1997 Mar;18(3):480-6 - PubMed
  9. Circulation. 1999 Jun 8;99(22):2958-63 - PubMed
  10. Circulation. 1997 Oct 21;96(8):2586-94 - PubMed
  11. Br Heart J. 1967 May;29(3):422-7 - PubMed
  12. Am J Cardiol. 1992 Feb 15;69(5):523-31 - PubMed
  13. Circulation. 1995 Dec 1;92(11):3206-11 - PubMed
  14. Exp Physiol. 2014 Aug;99(8):1031-41 - PubMed
  15. Cardiovasc Res. 1998 Oct;40(1):45-55 - PubMed
  16. J Appl Physiol (1985). 1999 Apr;86(4):1273-82 - PubMed
  17. Clin Exp Pharmacol Physiol. 2006 Dec;33(12):1269-74 - PubMed
  18. Circulation. 1998 Mar 17;97(10):943-5 - PubMed
  19. Biol Res. 2016 Feb 26;49:13 - PubMed
  20. Am Rev Respir Dis. 1993 Aug;148(2):330-8 - PubMed
  21. Am J Physiol. 1994 Aug;267(2 Pt 2):H605-13 - PubMed
  22. J Am Coll Cardiol. 1996 Mar 1;27(3):650-7 - PubMed
  23. Arch Int Pharmacodyn Ther. 1979 Feb;237(2):180-90 - PubMed
  24. Front Physiol. 2019 Nov 22;10:1420 - PubMed
  25. Hypertension. 2020 Nov;76(5):1451-1460 - PubMed
  26. Circ Res. 2007 Feb 2;100(2):284-91 - PubMed
  27. Eur Heart J. 2005 Jun;26(11):1115-40 - PubMed
  28. J Am Coll Cardiol. 1995 Nov 1;26(5):1257-63 - PubMed
  29. Eur J Neurosci. 1990 Jan;2(1):77-88 - PubMed
  30. Circulation. 1999 Jul 20;100(3):262-7 - PubMed
  31. J Am Coll Cardiol. 1993 Oct;22(4 Suppl A):72A-84A - PubMed
  32. J Physiol. 2016 Aug 1;594(15):4439-52 - PubMed
  33. Am J Physiol Regul Integr Comp Physiol. 2008 Sep;295(3):R719-26 - PubMed
  34. Brain Res. 2007 Jun 25;1155:100-7 - PubMed
  35. Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H340-H347 - PubMed
  36. J Appl Physiol (1985). 2013 May;114(9):1141-50 - PubMed
  37. Am J Physiol Regul Integr Comp Physiol. 2021 Mar 1;320(3):R203-R212 - PubMed
  38. Sleep. 2004 Nov 1;27(7):1337-43 - PubMed
  39. Respir Physiol Neurobiol. 2007 Jul 1;157(1):171-85 - PubMed
  40. Physiol Rev. 1994 Oct;74(4):829-98 - PubMed

Publication Types