Display options
Share it on

Cancers (Basel). 2021 May 13;13(10). doi: 10.3390/cancers13102346.

Small RNAs in Seminal Plasma as Novel Biomarkers for Germ Cell Tumors.

Cancers

Nina Mørup, Rytis Stakaitis, Ieva Golubickaite, Meritxell Riera, Marlene Danner Dalgaard, Mikkel H Schierup, Niels Jørgensen, Gedske Daugaard, Anders Juul, Kristian Almstrup

Affiliations

  1. Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.
  2. International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital, 2100 Copenhagen, Denmark.
  3. Laboratory of Molecular Neurooncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
  4. Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
  5. Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark.
  6. DTU Multi-Assay Core, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
  7. Department of Oncology, Copenhagen University Hospital, 2100 Copenhagen, Denmark.
  8. Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.

PMID: 34067956 PMCID: PMC8152278 DOI: 10.3390/cancers13102346

Abstract

Circulating miRNAs secreted by testicular germ cell tumors (TGCT) show great potential as novel non-invasive biomarkers for diagnosis of TGCT. Seminal plasma (SP) represents a biofluid closer to the primary site. Here, we investigate whether small RNAs in SP can be used to diagnose men with TGCTs or the precursor lesions, germ cell neoplasia in situ (GCNIS). Small RNAs isolated from SP from men with TGCTs (

Keywords: diagnostics; small RNAs; testicular cancer

References

  1. Cancer Res. 2004 Jul 15;64(14):4736-43 - PubMed
  2. Mol Cancer. 2019 Aug 9;18(1):123 - PubMed
  3. J Clin Oncol. 2019 Jun 1;37(16):1412-1423 - PubMed
  4. Nucleic Acids Res. 2012 May;40(10):4288-97 - PubMed
  5. Andrologia. 2020 Mar;52(2):e13503 - PubMed
  6. Br J Cancer. 2012 Nov 6;107(10):1754-60 - PubMed
  7. Biol Reprod. 2016 Sep 14;95(5):99 - PubMed
  8. Eur Urol. 2008 Jul;54(1):153-8 - PubMed
  9. Epigenetics. 2014 Jan;9(1):113-8 - PubMed
  10. Mol Cell Endocrinol. 2019 Jul 15;492:110443 - PubMed
  11. Ecology. 2007 Nov;88(11):2783-92 - PubMed
  12. Cancer Res. 2009 Jun 15;69(12):5241-50 - PubMed
  13. Clin Chem. 2011 Dec;57(12):1722-31 - PubMed
  14. BMC Cancer. 2018 Jan 4;18(1):20 - PubMed
  15. Andrology. 2019 Jul;7(4):469-474 - PubMed
  16. Br J Cancer. 2016 Jan 19;114(2):151-62 - PubMed
  17. Nat Rev Urol. 2020 Apr;17(4):201-213 - PubMed
  18. Int J Androl. 2007 Aug;30(4):398-404; discussion 404-5 - PubMed
  19. Andrology. 2015 Jan;3(1):78-84 - PubMed
  20. Lancet. 2016 Apr 23;387(10029):1762-74 - PubMed
  21. Int J Androl. 2011 Aug;34(4 Pt 2):e21-30; discussion e30-1 - PubMed
  22. Andrologia. 2012 Apr;44(2):78-85 - PubMed
  23. BMC Bioinformatics. 2018 Feb 14;19(1):54 - PubMed
  24. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  25. Lancet. 1988 Mar 5;1(8584):530 - PubMed
  26. Clin Biochem. 2014 Jul;47(10-11):967-72 - PubMed
  27. J Cancer Res Clin Oncol. 2017 Nov;143(11):2383-2392 - PubMed
  28. Ann Oncol. 2015 Apr;26(4):737-742 - PubMed
  29. Urol Int. 2016;97(1):76-83 - PubMed
  30. Folia Histochem Cytobiol. 2015;53(3):177-88 - PubMed
  31. Ann Oncol. 2005 Jun;16(6):863-8 - PubMed
  32. Int J Androl. 1987 Feb;10(1):19-28 - PubMed
  33. Nature. 2006 Jul 13;442(7099):199-202 - PubMed
  34. Endocrine. 2017 Sep;57(3):518-527 - PubMed
  35. Nucleic Acids Res. 2014 Jun;42(11):7290-304 - PubMed

Publication Types

Grant support