Display options
Share it on

Nanomaterials (Basel). 2021 May 13;11(5). doi: 10.3390/nano11051280.

Secreted Enzyme-Responsive System for Controlled Antifungal Agent Release.

Nanomaterials (Basel, Switzerland)

Andrea Bernardos, Matěj Božik, Ana Montero, Édgar Pérez-Esteve, Esther García-Casado, Miloslav Lhotka, Adéla Fraňková, María Dolores Marcos, José Manuel Barat, Ramón Martínez-Máñez, Pavel Klouček

Affiliations

  1. Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
  2. Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
  3. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
  4. Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
  5. Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16628 Prague, Czech Republic.

PMID: 34068155 PMCID: PMC8153022 DOI: 10.3390/nano11051280

Abstract

Essential oil components (EOCs) such as eugenol play a significant role in plant antimicrobial defense. Due to the volatility and general reactivity of these molecules, plants have evolved smart systems for their storage and release, which are key prerequisites for their efficient use. In this study, biomimetic systems for the controlled release of eugenol, inspired by natural plant defense mechanisms, were prepared and their antifungal activity is described. Delivery and antifungal studies of mesoporous silica nanoparticles (MSN) loaded with eugenol and capped with different saccharide gates-starch, maltodextrin, maltose and glucose-against fungus

Keywords: Aspergillus niger; antifungal; antimicrobial; essential oil component; exogenous enzyme; nanoparticles

References

  1. Diagn Microbiol Infect Dis. 2012 May;73(1):53-6 - PubMed
  2. Small. 2016 Apr 27;12(16):2173-85 - PubMed
  3. Angew Chem Int Ed Engl. 2007;46(40):7548-58 - PubMed
  4. J Biomater Sci Polym Ed. 2008;19(6):755-67 - PubMed
  5. Proc Nutr Soc. 2003 May;62(2):371-81 - PubMed
  6. Trends Plant Sci. 2016 Dec;21(12):1000-1007 - PubMed
  7. Int J Biochem Mol Biol. 2016 Jun 01;7(1):1-10 - PubMed
  8. Food Chem Toxicol. 2008 Feb;46(2):446-75 - PubMed
  9. Crit Rev Food Sci Nutr. 2012;52(6):533-52 - PubMed
  10. Sci Rep. 2020 Apr 9;10(1):6108 - PubMed
  11. Pest Manag Sci. 2021 Jul;77(7):3469-3483 - PubMed
  12. Phytochemistry. 2009 Feb;70(3):414-8 - PubMed
  13. J Control Release. 2008 Jan 4;125(1):1-15 - PubMed
  14. Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7281-3 - PubMed
  15. Int J Pharm. 2004 Jun 11;277(1-2):119-31 - PubMed
  16. Theranostics. 2019 May 18;9(11):3341-3364 - PubMed
  17. J Mater Chem B. 2017 May 7;5(17):3069-3083 - PubMed
  18. J Food Sci. 2011 Mar;76(2):N16-24 - PubMed
  19. Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92 - PubMed
  20. Chem Rev. 2016 Jan 27;116(2):561-718 - PubMed
  21. Molecules. 2017 Jan 01;22(1): - PubMed
  22. Crit Rev Microbiol. 2017 Nov;43(6):668-689 - PubMed
  23. Mol Pharm. 2019 Jun 3;16(6):2418-2429 - PubMed
  24. Macromolecules. 2009 Jan 13;42(1):3-13 - PubMed
  25. ACS Nano. 2010 Nov 23;4(11):6353-68 - PubMed
  26. Food Chem. 2014 Oct 15;161:270-8 - PubMed
  27. Acc Chem Res. 2013 Feb 19;46(2):339-49 - PubMed
  28. Angew Chem Int Ed Engl. 2006 Sep 11;45(36):5924-48 - PubMed
  29. Angew Chem Int Ed Engl. 2009;48(32):5884-7 - PubMed

Publication Types

Grant support