Display options
Share it on

Cancer Res. 2021 Jul 15;81(14):3806-3821. doi: 10.1158/0008-5472.CAN-20-2114. Epub 2021 Jun 07.

Dual Covalent Inhibition of PKM and IMPDH Targets Metabolism in Cutaneous Metastatic Melanoma.

Cancer research

Marwa Zerhouni, Anthony R Martin, Nathan Furstoss, Vincent S Gutierrez, Emilie Jaune, Nedra Tekaya, Guillaume E Beranger, Patricia Abbe, Claire Regazzetti, Hella Amdouni, Mohsine Driowya, Patrice Dubreuil, Frédéric Luciano, Arnaud Jacquel, Meri K Tulic, Thomas Cluzeau, Brendan P O'Hara, Issam Ben-Sahra, Thierry Passeron, Rachid Benhida, Guillaume Robert, Patrick Auberger, Stéphane Rocchi

Affiliations

  1. Université Côte d'azur, Nice, France.
  2. Inserm U1065, C3M, Team 2, Nice, France.
  3. Inserm U1065, C3M, Team 12, Nice, France.
  4. Institut de Chimie de Nice UMR 7272, Nice, France.
  5. CRCM, Team Signalisation, Hématopoïèse et Mécanismes de l'Oncogenèse, Marseille, France.
  6. CHU de Nice, Nice, France.
  7. Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.
  8. Université Côte d'azur, Nice, France. [email protected] [email protected].

PMID: 34099492 DOI: 10.1158/0008-5472.CAN-20-2114

Abstract

Overcoming acquired drug resistance is a primary challenge in cancer treatment. Notably, more than 50% of patients with BRAF

©2021 American Association for Cancer Research.

References

  1. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4:94–109. - PubMed
  2. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63. - PubMed
  3. Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96. - PubMed
  4. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16:345–58. - PubMed
  5. Flaherty K, Puzanov I, Kim K, Ribas A, McArthur G, Sosman J, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19. - PubMed
  6. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14. - PubMed
  7. Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014;513:105–9. - PubMed
  8. Goding CR. The path of least resistance: enhancing the effectiveness of BRAF inhibitors. Pigment Cell Melanoma Res. 2013;26:296–7. - PubMed
  9. Corazao-Rozas P, Guerreschi P, Jendoubi M. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. 2013;4:1986–98. - PubMed
  10. Jia D, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, et al. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci U S A. 2019;116:3909–18. - PubMed
  11. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47. - PubMed
  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. - PubMed
  13. Fischer GM, Vashisht Gopal YN, McQuade JL, Peng W, DeBerardinis RJ, Davies MA. Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res. 2018;31:11–30. - PubMed
  14. Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 2011;76:325–34. - PubMed
  15. Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, et al. Four key steps control glycolytic flux in mammalian cells. Cell Syst. 2018;7:49–62. - PubMed
  16. Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016;17:1721–30. - PubMed
  17. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14. - PubMed
  18. Smith LK, Rao AD, McArthur GA. Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. Pharmacol Res. 2016;107:42–7. - PubMed
  19. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3. - PubMed
  20. Xu Q, Liu L, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015;34:5482–93. - PubMed
  21. Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, et al. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep. 2017;7:2886. - PubMed
  22. Li Q, Zhang D, Chen X, He L, Li T, Xu X, et al. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer. Sci Rep. 2015;5:16082. - PubMed
  23. Zheng B, Geng L, Zeng L, Liu F, Huang Q. AKT2 contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis. Cell Signal. 2018;45:122–31. - PubMed
  24. Ginés A, Bystrup S, De Porras VR, Guardia C, Musulén E, Martínez-Cardús A, et al. PKM2 subcellular localization is involved in oxaliplatin resistance acquisition in HT29 human colorectal cancer cell lines. PLoS One. 2015;10:e0123830. - PubMed
  25. Wang X, Zhang F, Wu XR. Inhibition of pyruvate kinase M2 markedly reduces chemoresistance of advanced bladder cancer to cisplatin. Sci Rep. 2017;7:45983. - PubMed
  26. De Berardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200. - PubMed
  27. Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009;109:2880–93. - PubMed
  28. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers. 2019;11:688. - PubMed
  29. Brown KK, Spinelli JB, Asara JM, Toker A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 2017;7:391–99. - PubMed
  30. Huang F, Ni M, Chalishazar MD, Huffman KE, Kim J, Cai L, et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 2018;28:369–82. - PubMed
  31. Valvezan AJ, Turner M, Belaid A, Lam HC, Miller SK, McNamara MC, et al. mTORC1 couples nucleotide synthesis to nucleotide demand resulting in a targetable metabolic vulnerability. Cancer Cell. 2017;32:624–38. - PubMed
  32. Amdouni H, Robert G, Driowya M, Furstoss N, Métier C, Dubois A, et al. In vitro and in vivo evaluation of fully substituted (5-(3-Ethoxy-3- oxopropynyl)-4-(ethoxycarbonyl)-1,2,3-triazolyl-glycosides as original nucleoside analogues to circumvent resistance in myeloid malignancies. J Med Chem. 2017;60:1523–33. - PubMed
  33. Lehraiki A, Abbe P, Cerezo M, Rouaud F, Regazzetti C. Inhibition of melanogenesis by the antidiabetic metformin. J Invest Dermatol. 2014;134:2589–97. - PubMed
  34. Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, et al. Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther. 2013;12:1605–15. - PubMed
  35. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339:1323—8. - PubMed
  36. Nagasawa I, Muroi M, Kawatani M, Ohishi T, Ohba SI, Kawada M, et al. Identification of a small compound targeting PKM2-regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA. Cell Chem Biol. 2020;27:186–96. - PubMed
  37. Gupta V, Bamezai RNK. Human pyruvate kinase M2: a multifunctional protein. Protein Sci. 2010;19:2031–44. - PubMed
  38. Cerezo M, Lehraiki A, Millet A, Rouaud F, Plaisant M, Jaune E, et al. Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell. 2016;30:183. - PubMed
  39. Corazao-Rozas P, Gabert PE, Lancel S, Savina A, Marchetti P, Mortier L, et al. Mitochondrial oxidative phosphorylation controls cancer cell's life and death decisions upon exposure to MAPK inhibitors. Oncotarget. 2016;7:39473–85. - PubMed
  40. Hulea L, Gravel SP, Morita M, Cargnello M, Uchenunu O, Im YK, et al. Translational and HIF-1α-dependent metabolic reprogramming underpin metabolic plasticity and responses to kinase inhibitors and biguanides. Cell Metab. 2018;28:817–32. - PubMed
  41. Hall A, Meyle KD, Lange MK, Klima M, Sanderhoff M, Dahl C, et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene. Oncotarget. 2013;4:584–99. - PubMed
  42. Cesi G, Walbrecq G, Zimmer A, Kreis S, Haan C. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol Cancer. 2017;16:102. - PubMed
  43. Brummer C, Faerber S, Bruss C, Blank C, Lacroix R, Haferkamp S, et al. Metabolic targeting synergizes with MAPK inhibition and delays drug resistance in melanoma. Cancer Lett. 2019;442:453–63. - PubMed
  44. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N. Covalent inhibitors design and discovery. Eur J Med Chem. 2017;138:96–114. - PubMed
  45. Zhao Z, Bourne PE. Progress with covalent small-molecule kinase inhibitors. Drug Discov Today. 2018;23:727–35. - PubMed
  46. Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10:307–17. - PubMed
  47. Mestres J, Gregori-Puigjané E, Valverde S, Solé R V. The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol Biosyst. 2009;5:1051–7. - PubMed
  48. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–23. - PubMed
  49. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172:578–89. - PubMed
  50. John M, Long C, Aye Y. Perspective privileged electrophile sensors: a resource for covalent drug development. Cell Chem Biol. 2017;24:787–800. - PubMed
  51. Kruppa GH, Schoeniger J, Young MM. A top down approach to protein structural studies using chemical cross-linking and Fourier transform mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:155–62. - PubMed
  52. Shannon DA, Weerapana E. Covalent protein modification: the current landscape of residue-specific electrophiles. Curr Opin Chem Biol. 2015;24:18–26. - PubMed
  53. Backus KM, González-Páez GE, Chatterjee S, Lanning BR, John R. Proteome wide covalent ligand discovery in native biological systems. Nature. 2016;534:570–4. - PubMed
  54. Krainer AR, Wang Z, Jeon HY, Vander Heiden MG, Cantley LC, Akerman M, et al. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J Mol Cell Biol. 2011;4:79–87. - PubMed
  55. Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986;261:13807–12. - PubMed
  56. Wang P, Sun C, Zhu T, Xu Y. Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell. 2015;6:275–87. - PubMed
  57. Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, et al. XPKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 2013;155:397–409. - PubMed
  58. Babu MS, Mahanta S, Lakhter AJ, Hato T, Paul S, Naidu SR. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One. 2018;13:e0191419. - PubMed
  59. Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S, et al. Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep. 2018;8:14517. - PubMed
  60. Wang YH, Israelsen WJ, Lee D, Yu VWC, Jeanson NT, Clish CB, et al. Cell state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 2014;158:1309–23. - PubMed
  61. Goldberg MS, Sharp PA. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 2012;209:217–24. - PubMed
  62. Mattaini KR, Israelsen WJ, Southall N, Fiske BP, Asara JM, Brimacombe KR, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8:839–47. - PubMed
  63. Foulks JM, Ho KK, Liu J, Saunders M, Xu Y, Nix RN, et al. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther. 2013;12:1453–60. - PubMed
  64. Gao X, Wang H, Yang JJ, Liu X, Liu ZR. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 2012;45:598–609. - PubMed
  65. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2012;480:118–22. - PubMed

Publication Types