Display options
Share it on

FEBS J. 2021 Jun 14; doi: 10.1111/febs.16076. Epub 2021 Jun 14.

Homeostatic and pathogenic roles of the GM3 ganglioside.

The FEBS journal

Jin-Ichi Inokuchi, Hirotaka Kanoh, Kei-Ichiro Inamori, Masakazu Nagafuku, Takahiro Nitta, Koichi Fukase

Affiliations

  1. Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
  2. Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan.
  3. Department of Chemistry, Graduate School of Science, Osaka University, Japan.

PMID: 34125497 DOI: 10.1111/febs.16076

Abstract

Two decades ago, we achieved molecular cloning of ganglioside GM3 synthase (GM3S; ST3GAL5), the enzyme responsible for initiating biosynthesis of complex gangliosides. The efforts of our research group since then have been focused on clarifying the physiological and pathological roles of gangliosides, particularly GM3. This review summarizes our long-term studies on the roles of GM3 in insulin resistance and adipogenesis in adipose tissues, cholesterol uptake in intestine, and leptin resistance in hypothalamus. We hypothesized that GM3 plays a role in innate immune function of macrophages and demonstrated that molecular species of GM3 with differing acyl-chain structures and modifications functioned as pro- and anti-inflammatory endogenous Toll-like receptor 4 (TLR4) modulators in macrophages. Very-long-chain and α-hydroxy GM3 species enhanced TLR4 activation, whereas long-chain and unsaturated GM3 species counteracted this effect. Lipidomic analyses of serum and adipose tissues revealed that imbalances between such pro- and anti-inflammatory GM3 species promoted progression of metabolic disorders. GM3 thus functions as a physiological regulatory factor controlling the balance between homeostatic and pathological states. Ongoing studies based on these findings will clarify the mechanisms underlying ganglioside-dependent control of energy homeostasis and innate immune responses.

© 2021 Federation of European Biochemical Societies.

Keywords: GM3 ganglioside; NPC1L1; TLR4; adipocytes; cholesterol transport; chronic inflammation; innate immunity; insulin resistance; leptin resistance; metabolic syndrome; obesity

References

  1. Inokuchi J & Radin NS (1987) Preparation of the active isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibitor of murine glucocerebroside synthetase. J Lipid Res 28, 565-571. - PubMed
  2. Tagami S, Inokuchi Ji J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y et al. (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277, 3085-3092. - PubMed
  3. Sato T, Nihei Y, Nagafuku M, Tagami S, Chin R, Kawamura M, Miyazaki S, Suzuki M, Sugahara S, Takahashi Y et al. (2008) Circulating levels of ganglioside GM3 in metabolic syndrome: a pilot study. Obes Res Clin Pract 2, 231-238. - PubMed
  4. Veillon L, Go S, Matsuyama W, Suzuki A, Nagasaki M, Yatomi Y & Inokuchi J (2015) Identification of ganglioside GM3 molecular species in human serum associated with risk factors of metabolic syndrome. PLoS One 10, e0129645. - PubMed
  5. Nagafuku M, Sato T, Sato S, Shimizu K, Taira T & Inokuchi J (2015) Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3. Glycobiology 25, 303-318. - PubMed
  6. Inokuchi J & Uemura S (2014) ST3 beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5). Handbook of Glycosyltransferaes and Related Genes (Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y & Angata T, eds), Vol. 2, pp. 675-684, 2nd edn. Springer, Tokyo, Heidelberg, New York, Dordrecht, London. - PubMed
  7. Inokuchi J (2010) Membrane microdomains and insulin resistance. FEBS Lett 584, 1864-1871. - PubMed
  8. Inokuchi J (2014) GM3 and diabetes. Glycoconj J 31, 193-197. - PubMed
  9. Inokuchi J (2011) Physiopathological function of hematoside (GM3 ganglioside). Proc Jpn Acad Ser B Phys Biol Sci 87, 179-198. - PubMed
  10. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y & Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104, 13678-13683. - PubMed
  11. Kabayama K, Sato T, Kitamura F, Uemura S, Kang BW, Igarashi Y & Inokuchi J (2005) TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 15, 21-29. - PubMed
  12. Kanoh H, Nitta T, Go S, Inamori KI, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K et al. (2020) Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J 39, e101732. - PubMed
  13. Chawla A, Nguyen KD & Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11, 738-749. - PubMed
  14. Bays HE, Gonzalez-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, Rodbard HW & Henry RR (2008) Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 6, 343-368. - PubMed
  15. de Ferranti S & Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54, 945-955. - PubMed
  16. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 1821-1830. - PubMed
  17. Matsuzawa Y (1997) Pathophysiology and molecular mechanisms of visceral fat syndrome: the Japanese experience. Diabetes Metab Rev 13, 3-13. - PubMed
  18. Saltiel AR (2012) Insulin resistance in the defense against obesity. Cell Metab 15, 798-804. - PubMed
  19. Samaan MC (2011) The macrophage at the intersection of immunity and metabolism in obesity. Diabetol Metab Syndr 3, 29. - PubMed
  20. Sorisky A, Molgat AS & Gagnon A (2013) Macrophage-induced adipose tissue dysfunction and the preadipocyte: should I stay (and differentiate) or should I go? Adv Nutr 4, 67-75. - PubMed
  21. Suganami T & Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88, 33-39. - PubMed
  22. Shimizu K, Sakai M, Ando M, Chiji H, Kawada T, Mineo H & Taira T (2006) Newly developed primary culture of rat visceral adipocytes and their in vitro characteristics. Cell Biol Int 30, 381-388. - PubMed
  23. Sato T, Nagafuku M, Shimizu K, Taira T, Igarashi Y & Inokuchi J (2008) Physiological levels of insulin and IGF-1 synergistically enhance the differentiation of mesenteric adipocytes. Cell Biol Int 32, 1397-1404. - PubMed
  24. Gadgil MD, Anderson CA, Kandula NR & Kanaya AM (2014) Dietary patterns in Asian Indians in the United States: an analysis of the metabolic syndrome and atherosclerosis in South Asians Living in America study. J Acad Nutr Diet 114, 238-243. - PubMed
  25. Istvan ES & Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160-1164. - PubMed
  26. Stein EA (2002) An investigative look: selective cholesterol absorption inhibitors-embarking on a new standard of care. Am J Manag Care 8, S36-S39, discussion S45-7. - PubMed
  27. Betters JL & Yu L (2010) NPC1L1 and cholesterol transport. FEBS Lett 584, 2740-2747. - PubMed
  28. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M et al. (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201-1204. - PubMed
  29. Nakano T, Inoue I, Takenaka Y, Ono H, Katayama S, Awata T & Murakoshi T (2016) Ezetimibe promotes brush border membrane-to-lumen cholesterol efflux in the small intestine. PLoS One 11, e0152207. - PubMed
  30. Lin X, Racette SB, Ma L, Wallendorf M & Ostlund RE Jr (2017) Ezetimibe increases endogenous cholesterol excretion in humans. Arterioscler Thromb Vasc Biol 37, 990-996. - PubMed
  31. Jia L, Betters JL & Yu L (2011) Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 73, 239-259. - PubMed
  32. Wang J, Chu BB, Ge L, Li BL, Yan Y & Song BL (2009) Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption. J Lipid Res 50, 1653-1662. - PubMed
  33. Brown MS, Radhakrishnan A & Goldstein JL (2018) Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem 87, 783-807. - PubMed
  34. Davies JP, Levy B & Ioannou YA (2000) Evidence for a Niemann-pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics 65, 137-145. - PubMed
  35. Zhang JH, Ge L, Qi W, Zhang L, Miao HH, Li BL, Yang M & Song BL (2011) The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem 286, 25088-25097. - PubMed
  36. Ge L, Qi W, Wang LJ, Miao HH, Qu YX, Li BL & Song BL (2011) Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci USA 108, 551-556. - PubMed
  37. Simons K & Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33, 269-295. - PubMed
  38. Wang J & Yu RK (2013) Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci USA 110, 19137-19142. - PubMed
  39. Saslowsky DE, Cho JA, Chinnapen H, Massol RH, Chinnapen DJ-F, Wagner JS, De Luca HE, Kam W, Paw BH & Lencer WI (2010) Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or -2. J Clin Invest 120, 4399-4409. - PubMed
  40. Nihei W, Nagafuku M, Hayamizu H, Odagiri Y, Tamura Y, Kikuchi Y, Veillon L, Kanoh H, Inamori KI, Arai K et al. (2018) NPC1L1-dependent intestinal cholesterol absorption requires ganglioside GM3 in membrane microdomains. J Lipid Res 59, 2181-2187. - PubMed
  41. Ohmi Y, Tajima O, Ohkawa Y, Yamauchi Y, Sugiura Y, Furukawa K & Furukawa K (2011) Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem 116, 926-935. - PubMed
  42. Yoneshige A, Sasaki A, Miyazaki M, Kojima N, Suzuki A & Matsuda J (2010) Developmental changes in glycolipids and synchronized expression of nutrient transporters in the mouse small intestine. J Nutr Biochem 21, 214-226. - PubMed
  43. Jennemann R, Kaden S, Sandhoff R, Nordstrom V, Wang S, Volz M, Robine S, Amen N, Rothermel U, Wiegandt H et al. (2012) Glycosphingolipids are essential for intestinal endocytic function. J Biol Chem 287, 32598-32616. - PubMed
  44. Li PS, Fu ZY, Zhang YY, Zhang JH, Xu CQ, Ma YT, Li BL & Song BL (2014) The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med 20, 80-86. - PubMed
  45. Hegele RA, Guy J, Ban MR & Wang J (2005) NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis 4, 16. - PubMed
  46. Weinglass AB, Kohler M, Schulte U, Liu J, Nketiah EO, Thomas A, Schmalhofer W, Williams B, Bildl W, McMasters DR et al. (2008) Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc Natl Acad Sci USA 105, 11140-11145. - PubMed
  47. Friedman JM & Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395, 763-770. - PubMed
  48. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J et al. (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263-1271. - PubMed
  49. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E et al. (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856-859. - PubMed
  50. Yeo GS & Heisler LK (2012) Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15, 1343-1349. - PubMed
  51. Friedman J (2016) The long road to leptin. J Clin Invest 126, 4727-4734. - PubMed
  52. Allison MB & Myers MG Jr (2014) 20 years of leptin: connecting leptin signaling to biological function. J Endocrinol 223, T25-T35. - PubMed
  53. Bjorbak C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS & Myers MG Jr (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275, 40649-40657. - PubMed
  54. Singireddy AV, Inglis MA, Zuure WA, Kim JS & Anderson GM (2013) Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin's effects on fertility in mice. Endocrinology 154, 2434-2445. - PubMed
  55. Schnaar RL (2019) The biology of gangliosides. Adv Carbohydr Chem Biochem 76, 113-148. - PubMed
  56. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K & Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96, 9142-9147. - PubMed
  57. Yamashita T, Allende ML, Kalkofen DN, Werth N, Sandhoff K & Proia RL (2005) Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis. Genesis 43, 175-180. - PubMed
  58. Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, Martin-Villalba A, Jager R, Schorle H, Kenzelmann M et al. (2005) Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102, 12459-12464. - PubMed
  59. Nordstrom V, Willershauser M, Herzer S, Rozman J, von Bohlen Und Halbach O, Meldner S, Rothermel U, Kaden S, Roth FC, Waldeck C et al. (2013) Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol 11, e1001506. - PubMed
  60. Ji S, Ohkawa Y, Tokizane K, Ohmi Y, Banno R, Furukawa K, Kiyama H & Furukawa K (2015) b-Series gangliosides crucially regulate leptin secretion in adipose tissues. Biochem Biophys Res Commun 459, 189-195. - PubMed
  61. Ji S, Tokizane K, Ohkawa Y, Ohmi Y, Banno R, Okajima T, Kiyama H, Furukawa K & Furukawa K (2016) Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochem Biophys Res Commun 479, 453-460. - PubMed
  62. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N et al. (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 100, 3445-3449. - PubMed
  63. Inamori KI, Ito H, Tamura Y, Nitta T, Yang X, Nihei W, Shishido F, Imazu S, Tsukita S, Yamada T et al. (2018) Deficient ganglioside synthesis restores responsiveness to leptin and melanocortin signaling in obese KKAy mice. J Lipid Res 59, 1472-1481. - PubMed
  64. Cui H, Lopez M & Rahmouni K (2017) The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol 13, 338-351. - PubMed
  65. Banks AS, Davis SM, Bates SH & Myers MG Jr (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275, 14563-14572. - PubMed
  66. Senn HJ, Orth M, Fitzke E, Wieland H & Gerok W (1989) Gangliosides in normal human serum. Concentration, pattern and transport by lipoproteins. Eur J Biochem 181, 657-662. - PubMed
  67. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177-185. - PubMed
  68. Lumeng CN & Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121, 2111-2117. - PubMed
  69. Moresco EM, LaVine D & Beutler B (2011) Toll-like receptors. Curr Biol 21, R488-R493. - PubMed
  70. Kawai T & Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650. - PubMed
  71. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761-1772. - PubMed
  72. Guzman-Ruiz R, Ortega F, Rodriguez A, Vazquez-Martinez R, Diaz-Ruiz A, Garcia-Navarro S, Giralt M, Garcia-Rios A, Cobo-Padilla D, Tinahones FJ et al. (2014) Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in beta-cells. Int J Obes (Lond) 38, 1545-1554. - PubMed
  73. Harris HE, Andersson U & Pisetsky DS (2012) HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 8, 195-202. - PubMed
  74. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H & Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116, 3015-3025. - PubMed
  75. Ohto U, Fukase K, Miyake K & Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci USA 109, 7421-7426. - PubMed
  76. Park BS, Song DH, Kim HM, Choi BS, Lee H & Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-1195. - PubMed
  77. Ohto U, Yamakawa N, Akashi-Takamura S, Miyake K & Shimizu T (2012) Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem 287, 40611-40617. - PubMed
  78. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA et al. (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11, 155-161. - PubMed
  79. Boon J, Hoy AJ, Stark R, Brown RD, Meex RC, Henstridge DC, Schenk S, Meikle PJ, Horowitz JF, Kingwell BA et al. (2013) Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401-410. - PubMed
  80. Hama H (2010) Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta 1801, 405-414. - PubMed
  81. Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Bronneke HS et al. (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20, 678-686. - PubMed
  82. Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B, Dogra S, Ohman MK, Takeda K, Sugii S et al. (2014) CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20, 687-695. - PubMed
  83. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N et al. (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13, 1193-1202. - PubMed
  84. Oishi Y, Spann NJ, Link VM, Muse ED, Strid T, Edillor C, Kolar MJ, Matsuzaka T, Hayakawa S, Tao J et al. (2017) SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab 25, 412-427. - PubMed

Publication Types

Grant support