Display options
Share it on

Neural Regen Res. 2022 Jan;17(1):20-24. doi: 10.4103/1673-5374.314283.

Dendritic spine density changes and homeostatic synaptic scaling: a meta-analysis of animal studies.

Neural regeneration research

Thiago C Moulin, Danielle Rayêe, Helgi B Schiöth

Affiliations

  1. Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  2. Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY, USA.
  3. Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.

PMID: 34100421 PMCID: PMC8451564 DOI: 10.4103/1673-5374.314283

Abstract

Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity. This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders. One of the most studied homeostatic processes is synaptic scaling, where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors, neurotransmitters, and morphology. However, despite the comprehensive literature on the electrophysiological properties of homeostatic scaling, less is known about the structural adjustments that occur in the synapses and dendritic tree. In this study, we performed a meta-analysis of articles investigating the effects of chronic network excitation (synaptic downscaling) or inhibition (synaptic upscaling) on the dendritic spine density of neurons. Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling, independent of the intervention type. Then, we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.

Keywords: chronic inhibition; chronic stimulation; dendritic spines; downscaling; excitability; homeostatic plasticity; spine density; synaptic scaling; upscaling

Conflict of interest statement

None

References

  1. Cereb Cortex. 2007 Jun;17(6):1292-306 - PubMed
  2. Neural Plast. 2012;2012:825364 - PubMed
  3. J Neurosci. 2004 Aug 4;24(31):6928-38 - PubMed
  4. Neuron. 2010 Nov 4;68(3):512-28 - PubMed
  5. Curr Opin Neurobiol. 2017 Apr;43:87-93 - PubMed
  6. J Neurochem. 2016 Dec;139(6):973-996 - PubMed
  7. Front Cell Neurosci. 2020 Aug 26;14:252 - PubMed
  8. Nat Neurosci. 2001 Nov;4(11):1086-92 - PubMed
  9. PLoS Biol. 2020 Aug 21;18(8):e3000851 - PubMed
  10. PLoS Biol. 2015 Oct 13;13(10):e1002273 - PubMed
  11. Brain Stimul. 2018 Jul - Aug;11(4):856-859 - PubMed
  12. Cold Spring Harb Perspect Biol. 2012 Jan 01;4(1):a005736 - PubMed
  13. Nat Neurosci. 2000 Nov;3 Suppl:1178-83 - PubMed
  14. Neuron. 2017 Nov 15;96(4):871-882.e5 - PubMed
  15. Neuron. 2005 Sep 1;47(5):725-37 - PubMed
  16. Behav Brain Funct. 2020 Jun 11;16(1):6 - PubMed
  17. J Cereb Blood Flow Metab. 2014 May;34(5):737-42 - PubMed
  18. EMBO J. 2014 Oct 1;33(19):2231-46 - PubMed
  19. Cell Rep. 2015 May 12;11(6):859-865 - PubMed
  20. Biometrics. 2000 Jun;56(2):455-63 - PubMed
  21. Hippocampus. 2000;10(5):617-25 - PubMed
  22. J Physiol. 2003 Dec 1;553(Pt 2):497-509 - PubMed
  23. Front Cell Neurosci. 2020 Jun 16;14:164 - PubMed
  24. Neuron. 2009 Jan 29;61(2):247-58 - PubMed
  25. Neuron. 2013 Oct 16;80(2):327-34 - PubMed
  26. J Neurosci. 2013 Jan 30;33(5):2087-96 - PubMed
  27. Trends Mol Med. 2008 Mar;14(3):103-8 - PubMed
  28. Trends Neurosci. 2013 Jun;36(6):353-62 - PubMed
  29. Front Cell Neurosci. 2019 Jun 27;13:291 - PubMed
  30. J Neurosci. 2005 Aug 3;25(31):7121-33 - PubMed
  31. J Neurosci. 2008 Jun 25;28(26):6583-91 - PubMed
  32. EMBO J. 2018 Jan 4;37(1):122-138 - PubMed
  33. J Neurosci. 2005 Apr 20;25(16):4040-51 - PubMed
  34. BMJ. 1997 Sep 13;315(7109):629-34 - PubMed
  35. iScience. 2018 Oct 26;8:161-174 - PubMed
  36. J Physiol Sci. 2019 May;69(3):453-463 - PubMed
  37. Nat Neurosci. 1999 Oct;2(10):878-83 - PubMed
  38. Res Synth Methods. 2020 Sep;11(5):655-668 - PubMed
  39. Neurobiol Dis. 2013 Nov;59:267-76 - PubMed
  40. Hippocampus. 2019 Aug;29(8):755-761 - PubMed
  41. Front Mol Neurosci. 2018 Aug 30;11:303 - PubMed
  42. Cereb Cortex. 2013 Nov;23(11):2700-11 - PubMed
  43. J Neurosci Methods. 2014 Jan 15;221:92-102 - PubMed
  44. Nat Neurosci. 2011 Dec 18;15(2):250-7 - PubMed
  45. J Neurosci. 2001 Sep 1;21(17):6588-96 - PubMed
  46. Cell Rep. 2018 Feb 6;22(6):1451-1461 - PubMed
  47. J Neurosci. 2005 Mar 16;25(11):2895-905 - PubMed
  48. Nat Rev Neurosci. 2004 Feb;5(2):97-107 - PubMed
  49. Neuron. 2018 Oct 24;100(2):314-329 - PubMed
  50. PLoS One. 2018 Apr 26;13(4):e0196258 - PubMed

Publication Types