Display options
Share it on

Eur Phys J E Soft Matter. 2021 Jun 08;44(6):76. doi: 10.1140/epje/s10189-021-00078-x.

Multi-ciliated microswimmers-metachronal coordination and helical swimming.

The European physical journal. E, Soft matter

Sebastian Rode, Jens Elgeti, Gerhard Gompper

Affiliations

  1. Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany.
  2. Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany. [email protected].

PMID: 34101070 PMCID: PMC8187229 DOI: 10.1140/epje/s10189-021-00078-x

Abstract

The dynamics and motion of multi-ciliated microswimmers with a spherical body and a small number N (with [Formula: see text]) of cilia with length comparable to the body radius, is investigated by mesoscale hydrodynamics simulations. A metachronal wave is imposed for the cilia beat, for which the wave vector has both a longitudinal and a latitudinal component. The dynamics and motion is characterized by the swimming velocity, its variation over the beat cycle, the spinning velocity around the main body axis, as well as the parameters of the helical trajectory. Our simulation results show that the microswimmer motion strongly depends on the latitudinal wave number and the longitudinal phase lag. The microswimmers are found to swim smoothly and usually spin around their own axis. Chirality of the metachronal beat pattern generically generates helical trajectories. In most cases, the helices are thin and stretched, i.e., the helix radius is about an order of magnitude smaller than the pitch. The rotational diffusion of the microswimmer is significantly smaller than the passive rotational diffusion of the body alone, which indicates that the extended cilia contribute strongly to the hydrodynamic radius. The swimming velocity is found to increase with the cilia number N with a slightly sublinear power law, consistent with the behavior expected from the dependence of the transport velocity of planar cilia arrays on the cilia separation.

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):013310 - PubMed
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031904 - PubMed
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 2):016701 - PubMed
  4. Phys Rev Lett. 2012 Jul 20;109(3):038101 - PubMed
  5. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18058-63 - PubMed
  6. Phys Rev Lett. 2020 Oct 2;125(14):148101 - PubMed
  7. Trends Cell Biol. 2014 Mar;24(3):198-207 - PubMed
  8. Phys Rev Lett. 2012 Dec 28;109(26):268102 - PubMed
  9. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4470-5 - PubMed
  10. Phys Rev Lett. 2009 Apr 24;102(16):168101 - PubMed
  11. J Exp Biol. 1972 Aug;57(1):239-59 - PubMed
  12. Elife. 2014 Jul 29;3:e02750 - PubMed
  13. Biophys J. 2010 Aug 9;99(4):1018-26 - PubMed
  14. J R Soc Interface. 2021 Jan;18(174):20200660 - PubMed
  15. Science. 2016 Jul 8;353(6295):176-8 - PubMed
  16. Biochem Soc Trans. 2020 Feb 28;48(1):221-229 - PubMed
  17. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15727-32 - PubMed
  18. J R Soc Interface. 2014 Feb 26;11(94):20131160 - PubMed
  19. Rep Prog Phys. 2015 May;78(5):056601 - PubMed
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033314 - PubMed
  21. Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190152 - PubMed
  22. Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8315-8325 - PubMed
  23. Bioessays. 2005 Mar;27(3):299-310 - PubMed
  24. J R Soc Interface. 2015 Jul 6;12(108):20141358 - PubMed
  25. Biophys J. 2014 Oct 7;107(7):1487-8 - PubMed
  26. Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2784-93 - PubMed
  27. Biophys J. 2007 Mar 15;92(6):1900-17 - PubMed
  28. Nat Cell Biol. 2010 Apr;12(4):341-50 - PubMed
  29. J Fluid Mech. 2016 Jul 10;798:165-186 - PubMed
  30. Am Rev Respir Dis. 1988 Mar;137(3):726-41 - PubMed
  31. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30201-30207 - PubMed
  32. J Phys Condens Matter. 2020 May 8;32(19):193001 - PubMed
  33. Biophys J. 1989 Nov;56(5):1029-35 - PubMed
  34. Phys Rev Lett. 2010 Oct 15;105(16):168102 - PubMed
  35. J Phycol. 2011 Jun;47(3):580-583 - PubMed
  36. Soft Matter. 2018 Oct 31;14(42):8590-8603 - PubMed
  37. Nat Commun. 2020 May 26;11(1):2637 - PubMed
  38. Science. 2009 Jul 24;325(5939):487-90 - PubMed
  39. Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190758 - PubMed

Publication Types

Grant support