Display options
Share it on

Nat Biomed Eng. 2021 Nov;5(11):1389-1401. doi: 10.1038/s41551-021-00738-5. Epub 2021 Jun 14.

Induction of antigen-specific tolerance by nanobody-antigen adducts that target class-II major histocompatibility complexes.

Nature biomedical engineering

Novalia Pishesha, Thibault Harmand, Liyan Y Smeding, Weiyi Ma, Leif S Ludwig, Robine Janssen, Ashraful Islam, Yushu J Xie, Tao Fang, Nicholas McCaul, William Pinney, Harun R Sugito, Martin A Rossotti, Gualberto Gonzalez-Sapienza, Hidde L Ploegh

Affiliations

  1. Society of Fellows, Harvard University, Cambridge, MA, USA. [email protected].
  2. Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. [email protected].
  3. Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. [email protected].
  4. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA. [email protected].
  5. Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
  6. Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  7. Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
  8. Cátedra de Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay.
  9. Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. [email protected].

PMID: 34127819 DOI: 10.1038/s41551-021-00738-5

Abstract

The association of autoimmune diseases with particular allellic products of the class-II major histocompatibility complex (MHCII) region implicates the presentation of the offending self-antigens to T cells. Because antigen-presenting cells are tolerogenic when they encounter an antigen under non-inflammatory conditions, the manipulation of antigen presentation may induce antigen-specific tolerance. Here, we show that, in mouse models of experimental autoimmune encephalomyelitis, type 1 diabetes and rheumatoid arthritis, the systemic administration of a single dose of nanobodies that recognize MHCII molecules and conjugated to the relevant self-antigen under non-inflammatory conditions confers long-lasting protection against these diseases. Moreover, co-administration of a nanobody-antigen adduct and the glucocorticoid dexamethasone, conjugated to the nanobody via a cleavable linker, halted the progression of established experimental autoimmune encephalomyelitis in symptomatic mice and alleviated their symptoms. This approach may represent a means of treating autoimmune conditions.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Hayter, S. M. & Cook, M. C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun. Rev. 11, 754–765 (2012). - PubMed
  2. Morel, L. Mouse models of human autoimmune diseases: essential tools that require the proper controls. PLoS Biol. 2, E241 (2004). - PubMed
  3. Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004). - PubMed
  4. Idoyaga, J. et al. Comparable T helper 1 (T - PubMed
  5. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8 - PubMed
  6. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001). - PubMed
  7. Duarte, J. N. et al. Generation of immunity against pathogens via single-domain antibody–antigen constructs. J. Immunol. 197, 4838–4847 (2016). - PubMed
  8. Van Elssen, C. et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J. Nucl. Med. 58, 1003–1008 (2017). - PubMed
  9. Fang, T. et al. Structurally defined αMHC-II nanobody–drug conjugates: a therapeutic and imaging system for B-cell lymphoma. Angew. Chem. Int. Ed. Engl. 55, 2416–2420 (2016). - PubMed
  10. Ingram, J. R., Schmidt, F. I. & Ploegh, H. L. Exploiting nanobodies’ singular traits. Annu. Rev. Immunol. 36, 695–715 (2018). - PubMed
  11. Pishesha, N., Ingram, J. R. & Ploegh, H. L. Sortase A: a model for transpeptidation and its biological applications. Annu. Rev. Cell Dev. Biol. 34, 163–188 (2018). - PubMed
  12. Villadangos, J. A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007). - PubMed
  13. Giralt, M., Molinero, A. & Hidalgo, J. Active induction of experimental autoimmune encephalomyelitis (EAE) with MOG35-55 in the mouse. Methods Mol. Biol. 1791, 227–232 (2018). - PubMed
  14. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002). - PubMed
  15. Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016). - PubMed
  16. Isaksson, M. et al. Conditional DC depletion does not affect priming of encephalitogenic T - PubMed
  17. Bodhankar, S. et al. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur. J. Immunol. 41, 1165–1175 (2011). - PubMed
  18. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α - PubMed
  19. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003). - PubMed
  20. Ruffo, E. et al. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin. Immunol. 42, 101305 (2019). - PubMed
  21. Thaker, Y. R. et al. T - PubMed
  22. Paterson, A. M. et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603–1621 (2015). - PubMed
  23. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007). - PubMed
  24. Katz, J. D. et al. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993). - PubMed
  25. Maffia, P. et al. Inducing experimental arthritis and breaking self-tolerance to joint-specific antigens with trackable, ovalbumin-specific T cells. J. Immunol. 173, 151–156 (2004). - PubMed
  26. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994). - PubMed
  27. Sehrawat, S. et al. CD8 - PubMed
  28. Avalos, A. M. et al. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J. Exp. Med. 211, 365–379 (2014). - PubMed
  29. Bargh, J. D. et al. Cleavable linkers in antibody–drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019). - PubMed
  30. Florez-Grau, G. et al. Tolerogenic dendritic cells as a promising antigen-specific therapy in the treatment of multiple sclerosis and neuromyelitis optica from preclinical to clinical trials. Front Immunol. 9, 1169 (2018). - PubMed
  31. Sharrack, B. et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transpl. 55, 283–306 (2020). - PubMed
  32. Pishesha, N. et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc. Natl Acad. Sci. USA 114, 3157–3162 (2017). - PubMed
  33. Wilson, D. S. et al. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat. Biomed. Eng. 3, 817–829 (2019). - PubMed
  34. Kontos, S. et al. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013). - PubMed
  35. Lorentz, K. M. et al. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci. Adv. 1, e1500112 (2015). - PubMed
  36. Kishimoto, T. K. & Maldonado, R. A. Nanoparticles for the induction of antigen-specific immunological tolerance. Front. Immunol. 9, 230 (2018). - PubMed
  37. Pearson, R. M. et al. In vivo reprogramming of immune cells: technologies for induction of antigen-specific tolerance. Adv. Drug Deliv. Rev. 114, 240–255 (2017). - PubMed
  38. Iberg, C. A., Jones, A. & Hawiger, D. Dendritic cells as inducers of peripheral tolerance. Trends Immunol. 38, 793–804 (2017). - PubMed
  39. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003). - PubMed
  40. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016). - PubMed
  41. Henderson, J. G., Opejin, A., Jones, A., Gross, C. & Hawiger, D. CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity 42, 471–483 (2015). - PubMed
  42. Vanderlugt, C. J. & Miller, S. D. Epitope spreading. Curr. Opin. Immunol. 8, 831–836 (1996). - PubMed
  43. Unanue, E. R. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu. Rev. Immunol. 32, 579–608 (2014). - PubMed
  44. McCombs, J. R. & Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 17, 339–351 (2015). - PubMed
  45. Nicolaou, K. C. & Rigol, S. The role of organic synthesis in the emergence and development of antibody–drug conjugates as targeted cancer therapies. Angew. Chem. Int. Ed. Engl. 58, 11206–11241 (2019). - PubMed
  46. Rashidian, M. et al. Noninvasive imaging of immune responses. Proc. Natl Acad. Sci. USA 112, 6146–6151 (2015). - PubMed

Publication Types

Grant support