Display options
Share it on

Front Endocrinol (Lausanne). 2021 May 11;12:652512. doi: 10.3389/fendo.2021.652512. eCollection 2021.

Altered Spontaneous Brain Activity in Women During Menopause Transition and Its Association With Cognitive Function and Serum Estradiol Level.

Frontiers in endocrinology

Lemin He, Wei Guo, Jianfeng Qiu, Xingwei An, Weizhao Lu

Affiliations

  1. Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China.
  2. Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
  3. Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
  4. Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
  5. Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.

PMID: 34046011 PMCID: PMC8146460 DOI: 10.3389/fendo.2021.652512

Abstract

OBJECTIVE: Serum hormone deficiencies during menopause transition may affect spontaneous brain activity and global cognition. The purpose of this study was to explore the differences in spontaneous brain activity between premenopausal and perimenopausal women, and to investigate the associations between spontaneous brain activity, serum hormone levels and global cognition.

METHODS: Thirty-two premenopausal women (47.75 ± 1.55 years) and twenty-five perimenopausal women (51.60 ± 1.63 years) underwent resting-state functional MRI (fMRI) scan. Clinical information including Mini-Mental State Examination (MMSE), levels of estradiol (E2), free testosterone, progesterone, prolactin, follicle-stimulating hormone and luteinizing hormone were measured. Regional homogeneity (ReHo) was used to evaluate spontaneous brain activity alterations between perimenopausal and premenopausal women. Correlation analysis was used to investigate the associations between brain functional alterations and clinical measures in perimenopausal group.

RESULTS: The results demonstrated increased ReHo value in the right lingual gyrus (LG) and decreased ReHo value in the right superior frontal gyrus (SFG) in perimenopausal women compared with premenopausal women. In perimenopausal group, ReHo of the right LG showed a negative correlation with level of E2 (r = -0.586, p = 0.002), ReHo of the right SFG showed a positive correlation with level of E2 (r = 0.470, p = 0.018) and MMSE (r = 0.614, p = 0.001).

CONCLUSIONS: The results demonstrated that women approaching menopause suffered from altered functions in brain regions related to cognitive function, working memory, the results also revealed a direct association between levels of E2 and brain functions in perimenopausal women.

Copyright © 2021 He, Guo, Qiu, An and Lu.

Keywords: ReHo; estradiol; functional magnetic resonance imaging; menopause; spontaneous brain activity

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Neurosci Res. 2017 Jan 2;95(1-2):24-39 - PubMed
  2. J Clin Endocrinol Metab. 1976 Apr;42(4):629-36 - PubMed
  3. Nat Rev Endocrinol. 2015 Jul;11(7):393-405 - PubMed
  4. Behav Brain Res. 2014 Dec 15;275:84-7 - PubMed
  5. Sci Rep. 2020 Jun 4;10(1):9110 - PubMed
  6. Cereb Cortex. 2012 Jan;22(1):99-111 - PubMed
  7. Mol Neurobiol. 2020 Jun;57(6):2654-2670 - PubMed
  8. Neuroscience. 2017 Feb 20;343:449-458 - PubMed
  9. Menopause. 2018 Dec;25(12):1424-1431 - PubMed
  10. J Neurosci. 2013 Apr 10;33(15):6516-23 - PubMed
  11. Ann Neurol. 2002 May;51(5):599-603 - PubMed
  12. Fertil Steril. 2012 Apr;97(4):843-51 - PubMed
  13. Neuroimage. 2004 May;22(1):394-400 - PubMed
  14. Brain Struct Funct. 2009 Oct;213(6):525-33 - PubMed
  15. Menopause. 2010 Jul;17(4):823-7 - PubMed
  16. Gynecol Endocrinol. 1997 Aug;11(4):275-80 - PubMed
  17. J Clin Endocrinol Metab. 2001 Mar;86(3):1422-4 - PubMed
  18. Urology. 2001 Jun;57(6):1189-94 - PubMed
  19. Schizophr Bull. 2021 Mar 16;47(2):433-443 - PubMed
  20. Cereb Cortex. 2013 Oct;23(10):2322-36 - PubMed
  21. Obstet Gynecol. 2018 Dec;132(6):1325-1327 - PubMed
  22. J Sex Med. 2005 Sep;2(5):645-51 - PubMed
  23. Menopause. 2013 Oct;20(10):1020-6 - PubMed
  24. Clin Endocrinol (Oxf). 2005 Jul;63(1):50-5 - PubMed
  25. J Sex Med. 2019 May;16(5):711-720 - PubMed
  26. Psychoneuroendocrinology. 2019 Nov;109:104398 - PubMed
  27. Neuroimage Clin. 2020;26:102080 - PubMed
  28. Menopause. 2019 Nov;26(11):1318-1323 - PubMed
  29. Vitam Horm. 2020;114:233-256 - PubMed
  30. J Neuroendocrinol. 2018 Dec;30(12):e12655 - PubMed
  31. Cortex. 2014 Jul;56:73-84 - PubMed
  32. Aust N Z J Obstet Gynaecol. 2011 Aug;51(4):321-4 - PubMed
  33. Curr Psychiatry Rep. 2018 Sep 17;20(11):96 - PubMed
  34. Psychoneuroendocrinology. 2015 Sep;59:25-36 - PubMed
  35. Menopause. 2014 Apr;21(4):410-4 - PubMed
  36. Am J Med. 2005 Dec 19;118 Suppl 12B:14-24 - PubMed
  37. Front Neurol. 2020 Jan 31;11:17 - PubMed
  38. NPJ Parkinsons Dis. 2020 Oct 30;6:30 - PubMed
  39. Front Psychol. 2019 Oct 09;10:2235 - PubMed
  40. J Neurochem. 2020 Nov;155(3):231-249 - PubMed
  41. Comp Biochem Physiol B Biochem Mol Biol. 2020 Oct - Nov;248-249:110467 - PubMed
  42. Sex Med. 2019 Dec;7(4):480-488 - PubMed
  43. Invest Ophthalmol Vis Sci. 2020 Jul 1;61(8):33 - PubMed
  44. J Sex Med. 2018 May;15(5):662-670 - PubMed
  45. Sci Rep. 2017 Mar 21;7:44917 - PubMed
  46. Endocrinology. 2020 Sep 1;161(9): - PubMed

Publication Types