Display options
Share it on

Dev Neurobiol. 2021 Sep;81(6):833-846. doi: 10.1002/dneu.22839. Epub 2021 Jun 14.

Aging affects cognition and hippocampal ultrastructure in male Wistar rats.

Developmental neurobiology

Nino Lomidze, Mzia G Zhvania, Yousef Tizabi, Nadezhda Japaridze, Nino Pochkhidze, Fuad Rzayev, Tamar Lordkipanidze

Affiliations

  1. School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.
  2. Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia.
  3. Department of Pharmacology Howard, University College of Medicine, Washington, District of Columbia, USA.
  4. Medical School, New Vision University, Tbilisi, Georgia.
  5. Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan.

PMID: 34047044 DOI: 10.1002/dneu.22839

Abstract

It is now well established that aging is associated with emotional and cognitive changes. Although the basis of such changes is not fully understood, ultrastructural alterations in key brain areas are likely contributing factors. Recently, we reported that aging-related anxiety in male Wistar rats is associated with ultrastructural changes in the central nucleus of amygdala, an area that plays important role in emotional regulation. In this study, we evaluated the cognitive performance of adolescent, adult, and aged male Wistar rats in multi-branch maze (MBM) as well as in Morris water maze (MWM). We also performed ultrastructural analysis of the CA1 region of the hippocampus, an area intimately involved in cognitive function. The behavioral data indicate significant impairments in few indices of cognitive functions in both tests in aged rats compared to the other two age groups. Concomitantly, a total number of presynaptic vesicles as well as vesicles in the resting pool were significantly lower, whereas postsynaptic mitochondrial area was significantly higher in aged rats compared to the other age groups. No significant differences in presynaptic terminal area or postsynaptic mitochondrial number were detected between the three age groups. These results indicate that selective ultrastructural changes in specific hippocampal region may accompany cognitive decline in aging rats.

© 2021 Wiley Periodicals LLC.

Keywords: aging; cognition; hippocampal CA1; multi-branch maze; synapse

References

  1. Albani, S. H., Andrawis, M. M., Abella, R. J. H., Fulghum, J. T., Vafamand, N., & Dumas, T. C. (2015). Behavior in the elevated plus maze is differentially affected by testing conditions in rats under and over three weeks of age. Frontiers in Behavioral Neuroscience, 9, 31. https://doi.org/10.3389/fnbeh.2015.00031 - PubMed
  2. Alexander, G. E., Lin, L., Yoshimaru, E. S., Bharadwaj, P. K., Bergfield, K.L., Hoang, L. T., Chawla, M. K., Chen, K., Moeller, J. R., Barnes, C. A., & Trouard, I. P. (2020). Age-related regional network covariance of magnetic resonance imaging gray matter in the rat. Frontiers in Aging Neuroscience, 26, https://doi.org/10.3389/fnagi.2020.00267 - PubMed
  3. Bakula, D., & Scheibye-Knudsen, M. (2020). MitophAging: Mitophagy in aging and disease. Frontiers in Cell and Developmental Biology, 8, 239. https://doi.org/10.3389/fcell.2020.00239 - PubMed
  4. Blanchet, S., Chikhi, S., & Maltais, D. (2018). The benefits of physical activities on cognitive and mental health in healthy and pathological aging. Gériatrie et psychologie neuropsychiatrie du vieillissement, 16, 197-205. https://doi.org/10.1684/pnv.2018.0734 - PubMed
  5. Bonifazi, P., Erramuzpe, A., Diez, I., Gabilondo, I., Boisgontier, M. P., Pauwels, L., Stramaglia, S., Swinnen, S. P., & Cortes, J. M. (2018). Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging. Human Brain Mapping, 39, 4663-4677. https://doi.org/10.1002/hbm.24312 - PubMed
  6. Branch, A., Monasterio, A., Blair, G., Knierim, J. J., Gallagher, M., & Haberman, R. P. (2019). Aged rats with preserved memory dynamically recruit hippocampal inhibition in a local/global cue mismatch environment. Neurobiology of Aging, 76, 151-161. https://doi.org/10.1016/j.neurobiolaging.2018.12.015 - PubMed
  7. Brivio, P., Paladini, M. S., Racagni, G., Riva, M. A., Calabrese, F., & Molteni, R. (2019). From healthy aging to frailty: In search of the underlying mechanisms. Current Medicinal Chemistry, 26, 3685-3701. https://doi.org/10.2174/0929867326666190717152739 - PubMed
  8. Carmona-Gutierrez, D., Hughes, A. L., Madeo, F., & Ruckenstuhl, C. (2016). The crucial impact of lysosomes in aging and longevity. Ageing Research Reviews, 32, 2-12. https://doi.org/10.1016/j.arr.2016.04.009 - PubMed
  9. Chand, G. B., Wu, J., Hajjar, I., & Qiu, D. (2017). Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connectivity, 7, 401-412. https://doi.org/10.1089/brain.2017.0509 - PubMed
  10. Chen, G., Kroemer, G., & Kepp, O. (2020). Mitophagy: An emerging role in aging and age-associated diseases. Frontiers in Cell and Developmental Biology, 8, 200. https://doi.org/10.3389/fcell.2020.00200 - PubMed
  11. D'Anca, M., Fenoglio, C., Serpente, M., Arosio, B., Cesari, M., Scarpini, E. A., & Galimberti, D. (2019). Exosome determinants of physiological aging and age-related neurodegenerative diseases. Frontiers in Aging Neuroscience, 11, 232. https://doi.org/10.3389/fnagi.2019.00232 - PubMed
  12. da Costa, J. P., Vitorino, R., Silva, G. M., Vogel, C., Duarte, A. C., & Rocha-Santos, T. A. (2016). A synopsis on aging: Theories, mechanisms and future prospects. Ageing Research Reviews, 29, 90-112. https://doi.org/10.1016/j.arr.2016.06.005 - PubMed
  13. de Quervain, D. J., Roozendal, B., & McGaugh, J. L. (1998). Stress and glucocroticoids impair retrieval of long-term special memory. Nature, 394, 787-790. https://doi.org/10.1038/29542 - PubMed
  14. Denker, A., & Rizzoli, S. O. (2010). Synaptic vesicle pools: An update. Frontiers in Synaptic Neuroscience, 2, 135. https://doi.org/10.3389/fnsyn.2010.00135 - PubMed
  15. Dumas, J. A. (2017). Strategies for preventing cognitive decline in healthy older adults. Canadian Journal of Psychiatry, 62, 754-760. https://doi.org/10.1177/0706743717720691 - PubMed
  16. Estanislau, C., Veloso, A. W. N., Filgueiras, G. B., Maio, T. P., Dal-Col, M. L. C., Cunha, D. C., Klein, R., Carmona, L. F., & Fernandez-Teruel, A. (2019). Rat self-grooming and its relationships with anxiety, dearousal and perseveration: Evidence for a self-grooming trait. Physiology & Behavior, 209, 112585. https://doi.org/10.1016/j.physbeh.2019.11258 - PubMed
  17. Feng, S. T., Wang, Z. Z., Yuan, Y. H., Wang, X. L., Sun, H. M., Chen, N. H., & Zhang, Y. (2020). Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson's disease. Pharmacological Reserch, 151, 104553. https://doi.org/10.1016/j.phrs.2019.104553 - PubMed
  18. Ferreira, I. L., Nascimento, M. V., Ribeiro, M., Almeida, S., Cardoso, S. M., Grazina, M., Pratas, J., Santos, M. J., Januário, C., Oliveira, C. R., & Rego, A. C. (2010). Mitochondrial-dependent apoptosis in Huntington's disease human cybrids. Experimental Neurology, 222, 243-55. https://doi.org/10.1016/j.expneurol.2010.01.002 - PubMed
  19. Fulop, T., Larbi, A., Khalil, A., Cohen, A. A., & Witkowski, J. M. (2019). Are we ill because we age? Frontiers in Physiology, 10, 1508. https://doi.org/10.3389/fphys.2019.01508 - PubMed
  20. Ge, Y., Dong, Z., Bagot, R. C., Howland, J. C., Phillips, A. G., Wong, T. P., & Wang, Y. T. (2010). Hippocampal long-term depression is required for the consolidation of spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 107, 16697-16702. https://doi.org/10.1073/pnas - PubMed
  21. Giovanetti, A., Tortolici, F., & Rufini, S. (2020). Why do the cosmic rays induce aging? Frontiers in Physiology, 11, 955. https://doi.org/10.3389/fphys.2020.00955 - PubMed
  22. Gray, D. A., & Woulfe, J. (2005). Lipofuscin and aging: A matter of toxic waste. Science of Aging Knowledge Environment, 2005(5), re1. https://doi.org/10.1126/sageke.2005.5.re1 - PubMed
  23. Guerra-Gomes, S., Viana, J. F., Nascimento, D. S. M., Correia, J. S., Morais Sardinha, V., Caetano, I., Sousa, N., Pinto, L., & Oliveira, J. F. (2018). The role of astrocytic calcium signaling in the aged prefrontal cortex. Frontiers in Cellular Neuroscience, 12, 379. https://doi.org/10.3389/fncel.2018.00379 - PubMed
  24. Hamilton, K., & Harvey, J. (2021). The neuronal actions of leptin and the implications for treating Alzheimer's disease. Pharmaceuticals (Basel), 14(1), E52. https://doi.org/10.3390/ph14010052 - PubMed
  25. Janck, D., Herlitze, S., Kringelbach, M. L., & Deco, G. (2021). Bridging the gap between single receptor type activity and whole brain dynamics. The FEBS Journal, https://doi.org/10.1111/febs.15855 - PubMed
  26. Jang, J. Y., Blum, A., Liu, J., & Finke, T. (2018). The role of mitochondria in aging. Journal of Clinical Investigation, 128, 3662-3670. https://doi.org/10.1172/JCI120842 - PubMed
  27. Juan, S. M. A., & Adlard, P. A. (2019). Ageing and cognition. Subcellular Biochemistry, 91, 107-122. https://doi.org/10.1007/978-981-13-3681-2_5 - PubMed
  28. Kafri, M., Hutzler, Y., Korsensky, O., & Laufer, Y. (2019). Functional performance and balance in the oldest-old. Journal of Geriatric Physical Therapy, 42, 183-188. https://doi.org/10.1519/JPT.0000000000000133 - PubMed
  29. Kirova, A. M., Bays, R. B., & Lagalwar, S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer's disease. Biomed Research International, 2015, 748212. https://doi.org/10.1155/2015/748212 - PubMed
  30. Kowalska, M., Piekut, T., Prendecki, M., Sodel, A., Kozubski, W., & Dorszews, J. (2020). Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA and Cell Biology, 39, 1410-1420. https://doi.org/10.1089/dna.2019.5347 - PubMed
  31. Lee, H., Chung, K., Lee, H., Lee, K., & Lim, J. H. (2011). Downregulation of mitochondrial lon protease impairs mitochondrial function and causes hepatic insulin resistance in human liver SK-HEP-1 cells. Diabetologia, 54, 1437-1446. https://doi.org/10.1007/s00125-011-2074-z - PubMed
  32. Liang, K. J., & Carlson, E. S. (2020). Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiology of Learning and Memory, 170, 106981. https://doi.org/10.1016/j.nlm.2019.01.004 - PubMed
  33. Liu, J., Liu, W., & Yang, H. (2019). Balancing apoptosis and autophagy for Parkinson's disease therapy: Targeting BCL-2. ACS Chemical Neuroscience, 10, 792-802. https://doi.org/10.1021/acschemneuro.8b00356 - PubMed
  34. Lobzhanidze, G., Japaridze, N., Lordkipanidze, T., Rzayev, F., MacFabe, D. F., & Zhvania, M. G. (2020). Behavioral and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats: Further development of a rodent model of autism. International Journal of Developmental Neuroscience, 80, 139-156. https://doi.org/10.1002/jdn.10011 - PubMed
  35. Lobzhanidze, G., Lordkipanidze, T., Zhvania, M., Japaridze, N., MacFabe, D. F., Pochkidze, N., Gasimov, E., & Rzaev, F. (2019). Effect of propionic acid on the morphology of the amygdala in adolescent male rats and their behavior. Micron, 125, 102732. https://doi.org/10.1016/j.micron.2019.102732 - PubMed
  36. Löckenhoff, C. E., & Rutt, J. L. (2017). Age differences in self-continuity: Converging evidence and directions for future research. The Gerontologist, 57, 396-408. https://doi.org/10.1093/geront/gnx010 - PubMed
  37. Löckenhoff, C. E., Rutt, J. L., Samanez-Larkin, G. R., Gallagher, C., O'Donoghue, T., & Reyna, V. F. (2020). Age effects in sequence-construction for a continuous cognitive task: Similar sequence-trends but fewer switch-points. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 75, 762-771. https://doi.org/10.1093/geronb/gby090 - PubMed
  38. Lomidze, N., Zhvania, M. G., Tizabi, Y., Japaridze, N., Pochkhidze, N., Rzayev, F., & Gasimov, E. (2020). Age-related behavioral and ultrastructural changes in the rat amygdala. Developmental Neurobiology, 80, 433-442. https://doi.org/10.1002/dneu.22788 https://doi.org/10.1002/dneu.22788 - PubMed
  39. Lu, W., Pikhart, H., & Sacker, A. (2019). Domains and measurements of healthy aging in epidemiological studies: A review. The Gerontologist, 59(4), e294-e310. https://doi.org/10.1093/geront/gny029 - PubMed
  40. Michel, J. P., Graf, C., & Ecarnot, F., (2019). Individual healthy aging indices, measurements and scores. Aging Clinical and Experimental Research, 31, 1719-1725. https://doi.org/10.1007/s40520-019-01327-y - PubMed
  41. Moore, M. N. (2020). Lysosomes, autophagy, and hormesis in cell physiology, pathology, and age-related disease. Dose Response, 18(3), 1559325820934227. https://doi.org/10.1177/1559325820934227 - PubMed
  42. Moreno-García, A., Kun, A., Calero, O., Medina, M., & Calero, M. (2018). An overview of the role of lipofuscin in age-related neurodegeneration. Frontiers in Neuroscience, 12, 464. https://doi.org/10.3389/fnins.2018.00464 - PubMed
  43. Mu, M.-D., Geng, H.-Y., Rong, K.-L., Peng, R.-C., Wang, S.-T., Geng, L.-T., Qian, Z.-M., Yung, W.-H., & Ke, Y. (2020). A limbic circuitry involved in emotional stress-induced grooming. Nature Communications, 11, 2261. https://doi.org/10.1038/s41467-020-16203-x - PubMed
  44. Nakajima, M., & Schmitt, L. I. (2020). Understanding the circuit basis of cognitive functions using mouse models. Neuroscience Research, 52, 44-58. https://doi.org/10.1016/j.neures.2019.12.009 - PubMed
  45. Ng'oma, E., Reichwald, K., Dorn, A., Wittig, M., Balschun, T., Franke, A., Platzer, M., & Cellerino, A. (2014). The age related markers lipofuscin and apoptosis show different genetic architecture by QTL mapping in short-lived Nothobranchius fish. Aging, 6, 468-480. https://doi.org/10.18632/aging.100660 - PubMed
  46. Panel, M., Ghaleh, B., & Morin, D. (2018). Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell, 17(4), e12793. https://doi.org/10.1111/acel.12793 - PubMed
  47. Park, D. C., & Festini, S. B. (2017). Theories of memory and aging: A look at the past and a glimpse of the future. The Journals of Gerontology, Series B: Psychological Science and Social Sciences, 72, 82-90. https://doi.org/10.1093/geronb/gbw066 - PubMed
  48. Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. Academic Press. - PubMed
  49. Peters, A., & Kemper, T. (2012). A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiology of Aging, 33, 2357-72. https://doi.org/10.1016/j.neurobiolaging.2011.11.015 - PubMed
  50. Peterson, J. R., Baumgartner, D. A., & Austin, S. L. (2020). Healthy ageing in the far North: Perspectives and prescriptions. International Journal of Circumpolar Health, 79(1), 1735036. https://doi.org/10.1080/22423982.2020.1735036 - PubMed
  51. Pignolo, R. J., Wang, H., & Kaplan, F. S. (2020). Fibrodysplasia ossificans progressiva (FOP): A segmental progeroid syndrome. Frontiers in Endocrinology, 10, 908. https://doi.org/10.3389/fendo.2019.00908 - PubMed
  52. Reas, E. T., Hagler, D. J. Jr., White, N. S., Kuperman, J. M., Bartsch, H., Wierenga, C. E., Galasko, D., Brewer, J. B., Dale, A. M., & McEvoy, L. K. (2018). Microstructural brain changes track cognitive decline in mild cognitive impairment. Neuroimage: Clinical, 20, 883-891. https://doi.org/10.1016/j.nicl.2018.09.027 - PubMed
  53. Rizzoli, S. O., & Betz, W. J. (2005). Synaptic vesicle pools. Nature Reviews Neuroscience, 6, 57-69. https://doi.org/10.1038/nrn1583 - PubMed
  54. Roldán-Tapia, L., García, J., Cánovas, R., & León, I. (2012). Cognitive reserve, age, and their relation to attentional and executive functions. Applied Neuropsychology: Adult, 19, 2-8. https://doi.org/10.1080/09084282.2011.595458 - PubMed
  55. Rossini, P. M., Rossi, S., Babiloni, C., & Polich, J. (2007). Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. Progress in Neuroviology, 83, 375-400. https://doi.org/10.1016/j.pneurobio.2007.07.010 - PubMed
  56. Santabarbara, J., Lipnicki, D. M., Olaya, B., Villagrasa, B., Bueno-Notivol, J., Nuez, L., Lopez-Anton, R., & Gracia-Garcia, P. (2020). Dementia? An updated meta-analysis of prospective cohort studies. Journal of Clinical Medicine, 9(6), 1791. https://doi.org/10.3390/jcm9061791 - PubMed
  57. Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology, 68, 1501-1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f - PubMed
  58. Shoji, H., Takao, K., Hattori, S., & Miyakawa, T. (2016). Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Molecular Brain, 9, 11. https://doi.org/10.1186/s13041-016-0191-9 - PubMed
  59. Sudhof, T. C. (2012). The presynaptic active zone. Neuron, 75, 11-25. https://doi.org/10.1016/j.neuron.2012.06.012 - PubMed
  60. Tangalos, E. G., & Petersen, R. C. (2018). Mild cognitive impairment in geriatrics. Clinics in Geriatric Medicine, 34, 563-589. https://doi.org/10.1016/j.cger.2018.06.005 - PubMed
  61. Tatton, W. G., Chalmers-Redman, R., Brown, D., & Tatton, N. (2003). Apoptosis in Parkinson's disease: Signals for neuronal degradation. Annals of Neurology, 53(3), S61-S70. https://doi.org/10.1002/ana.10489 - PubMed
  62. Tausen, B. M., Csordas, A., & Macrae, C. N. (2020). The mental landscape of imagining life beyond the current life span: Implications for construal and self-continuity. Innovation in. Aging, 4(3), igaa013. https://doi.org/10.1093/geroni/igaa013 - PubMed
  63. Venkatesan, S., Subramaniam, S., Rajeev, P., Chopra, Y., Jose, M., & Nair, D. (2020). Differential scaling of synaptic molecules within functional zones of an excitatory synapse during homeostatic plasticity. eNeuro, 7(2), 0407-19.2020. https://doi.org/10.1523/ENEURO.0407-19.2020 - PubMed
  64. Verbitsky, A., Dopfel, D., & Zhang, N. (2020). Rodent models of post-traumatic stress disorder: Behavioral assessment. Translational Psychiatry, 10, 132. https://doi.org/10.1038/s41398-020-0806-x - PubMed
  65. Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848-858. https://doi.org/10.1038/nprot.2006.116 - PubMed
  66. Wang, D., Schneider, S., Schwartz, J. E., & Stone, A. A. (2020). Heightened stress in employed individuals is linked to altered variability and inertia in emotions. Frontiers in Psychology, 11, 1152. https://doi.org/10.3389/fpsyg.2020.01152 - PubMed
  67. Wang, Q., & Zennadi, R. (2020). Oxidative stress and thrombosis during aging: The roles of oxidative stress in RBCs in venous thrombosis. International Journal Molecular Sciences, 21(12), 4259. https://doi.org/10.3390/ijms21124259 - PubMed
  68. Yang, Y., Xue, L. J., Xue, X., Ou, Z., Jiang, T., & Zhang, Y. D. (2018). MFN2 ameliorates cell apoptosis in a cellular model of Parkinson's disease induced by rotenone. Experimental and Therapeutic Medicine, 16, 3680-3685. https://doi.org/10.3892/etm.2018.6595 - PubMed
  69. Zhvania, M., Gogokhia, N., Tizabi, Y., Japaridze, N., Pochkidze, N., Lomidze, N., Rzayev, F., & Gasimov, E. (2020). Behavioral and neuroanatomical effects on exposure to white noise in rats. Neuroscience Letters, 728, 134898. https://doi.org/10.1016/j.neulet.2020.134898 https://doi.org/10.1016/j.neulet.2020.134898 - PubMed
  70. Zhvania, M. G., Japaridze, N. J., Qsovreli, M. G., Okuneva, V. G., Surmava, A. G., & Lordkipanidze, T. G. (2015). Electron microscopic morphometry of isolated rat brain porosome complex. Neuroscience Research, 100, 17-20. https://doi.org/10.1016/j.neures.2015.06.008 https://doi.org/10.1016/j.neures.2015.06.008 - PubMed

Publication Types

Grant support