Display options
Share it on

Iperception. 2021 May 21;12(3):20416695211017924. doi: 10.1177/20416695211017924. eCollection 2021.

Spatial and Temporal Selectivity of Translational Glass Patterns Assessed With the Tilt After-Effect.

i-Perception

Andrea Pavan, Adriano Contillo, Filippo Ghin, Rita Donato, Matthew J Foxwell, Daniel W Atkins, George Mather, Gianluca Campana

Affiliations

  1. Department of Psychology, University of Bologna, Bologna, Italy; School of Psychology, University of Lincoln, Lincoln, UK.
  2. Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.
  3. Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine of the TU Dresden, Dresden, Germany.
  4. Department of General Psychology, University of Padova, Padova, Italy; Human Inspired Technology Research Centre, University of Padova, Padova, Italy.
  5. Department of Psychology, University of York, York, UK.
  6. School of Psychology, University of Lincoln, Lincoln, UK.

PMID: 34104382 PMCID: PMC8172339 DOI: 10.1177/20416695211017924

Abstract

Glass patterns (GPs) have been widely employed to investigate the mechanisms underlying processing of global form from locally oriented cues. The current study aimed to psychophysically investigate the level at which global orientation is extracted from translational GPs using the tilt after-effect (TAE) and manipulating the spatiotemporal properties of the adapting pattern. We adapted participants to translational GPs and tested with sinewave gratings. In Experiment 1, we investigated whether orientation-selective units are sensitive to the temporal frequency of the adapting GP. We used static and dynamic translational GPs, with dynamic GPs refreshed at different temporal frequencies. In Experiment 2, we investigated the spatial frequency selectivity of orientation-selective units by manipulating the spatial frequency content of the adapting GPs. The results showed that the TAE peaked at a temporal frequency of ∼30 Hz, suggesting that orientation-selective units responding to translational GPs are sensitive to high temporal frequencies. In addition, TAE from translational GPs peaked at lower spatial frequencies than the dipoles' spatial constant. These effects are consistent with form-motion integration at low and intermediate levels of visual processing.

© The Author(s) 2021.

Keywords: dynamic translational Glass patterns; motion-form integration; selectivity to spatial frequency; selectivity to temporal frequency; tilt after-effect

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. J Vis. 2015;15(13):4 - PubMed
  2. J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ - PubMed
  3. J Vis. 2007 Feb 27;7(3):5 - PubMed
  4. Proc Biol Sci. 2012 Dec 05;280(1752):20122339 - PubMed
  5. Vision Res. 1988;28(11):1179-91 - PubMed
  6. Neuroreport. 2005 Sep 8;16(13):1427-30 - PubMed
  7. Curr Biol. 2000 Jun 1;10(11):679-82 - PubMed
  8. Vision Res. 1984;24(5):471-8 - PubMed
  9. J Vis. 2014 Jan 08;14(1): - PubMed
  10. J Neurophysiol. 2008 May;99(5):2456-69 - PubMed
  11. J Vis. 2017 May 1;17(5):2 - PubMed
  12. Perception. 1997;26(3):253-68 - PubMed
  13. Vision Res. 2003 Mar;43(5):597-606 - PubMed
  14. Eur J Neurosci. 2010 Mar;31(6):1043-62 - PubMed
  15. J Physiol. 1985 Aug;365:331-63 - PubMed
  16. Vision Res. 2015 Feb;107:30-5 - PubMed
  17. J Vis. 2018 May 1;18(5):10 - PubMed
  18. J Neurosci. 2002 Oct 1;22(19):8661-4 - PubMed
  19. Vision Res. 1997 Aug;37(16):2227-46 - PubMed
  20. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1645-50 - PubMed
  21. Vision Res. 2019 May;158:126-134 - PubMed
  22. PLoS Biol. 2017 Nov 30;15(11):e2003646 - PubMed
  23. J Vis. 2010 Apr 22;10(4):9.1-16 - PubMed
  24. Perception. 2019 Apr;48(4):286-315 - PubMed
  25. Neuroimage. 2005 Nov 1;28(2):440-52 - PubMed
  26. Cereb Cortex. 2003 Jan;13(1):15-24 - PubMed
  27. Vision Res. 2007 Jan;47(2):253-9 - PubMed
  28. Vision Res. 1997 Sep;37(17):2325-30 - PubMed
  29. J Vis. 2008 Aug 01;8(10):5.1-13 - PubMed
  30. J Vis. 2004 May 18;4(6):415-26 - PubMed
  31. Nature. 1969 Aug 9;223(5206):578-80 - PubMed
  32. Spat Vis. 1986;1(3):231-42 - PubMed
  33. Vision Res. 2006 Mar;46(6-7):1139-44 - PubMed
  34. J Opt Soc Am A Opt Image Sci Vis. 2005 Oct;22(10):2169-81 - PubMed
  35. Nature. 1980 Mar 13;284(5752):164-5 - PubMed
  36. Vision Res. 2012 Nov 1;72:55-62 - PubMed
  37. J Vis. 2001;1(2):99-111 - PubMed
  38. Proc Biol Sci. 2000 Sep 7;267(1454):1705-10 - PubMed
  39. Vision Res. 1998 Oct;38(19):2933-47 - PubMed
  40. Spat Vis. 2000;13(1):107-28 - PubMed
  41. J Vis. 2012 Jun 22;12(6): - PubMed
  42. Vision Res. 1985;25(12):1947-55 - PubMed
  43. Cereb Cortex. 2016 Dec;26(12):4416-4434 - PubMed
  44. Neuron. 2003 Jan 23;37(2):333-46 - PubMed
  45. Sci Rep. 2016 Mar 23;6:23567 - PubMed
  46. J Vis. 2009 Jan 21;9(1):27.1-11 - PubMed
  47. Curr Biol. 2003 Feb 18;13(4):342-9 - PubMed
  48. Nature. 1999 Jul 1;400(6739):65-9 - PubMed
  49. Vision Res. 2005 Sep;45(20):2668-76 - PubMed
  50. Vision Res. 2001 Dec;41(28):3785-90 - PubMed
  51. Spat Vis. 1997;10(4):437-42 - PubMed
  52. J Neurosci. 2006 Mar 15;26(11):2941-50 - PubMed
  53. Invest Ophthalmol Vis Sci. 1986 Apr;27(4):538-43 - PubMed
  54. Neuroimage. 2017 Aug 15;157:555-560 - PubMed
  55. J Neurosci. 2002 Sep 15;22(18):8334-45 - PubMed
  56. Perception. 2005;34(10):1205-19 - PubMed
  57. J Vis. 2008 Mar 28;8(3):31.1-12 - PubMed
  58. Vis Neurosci. 2017 Jan;34:E010 - PubMed
  59. Atten Percept Psychophys. 2012 Jan;74(1):185-93 - PubMed
  60. Vision Res. 2005 May;45(11):1355-63 - PubMed
  61. Sci Rep. 2015 Oct 27;5:15530 - PubMed
  62. J Vis. 2009 Nov 30;9(12):22.1-11 - PubMed
  63. J Vis. 2005 May 13;5(5):405-16 - PubMed
  64. Spat Vis. 1997;10(4):433-6 - PubMed
  65. Eur J Neurosci. 2020 Aug;52(3):3032-3046 - PubMed
  66. Front Comput Neurosci. 2015 Apr 21;9:45 - PubMed
  67. J Neurophysiol. 2005 Dec;94(6):4373-86 - PubMed
  68. Vision Res. 2004 Mar;44(5):441-8 - PubMed
  69. J Vis. 2006 Jan 18;6(1):37-52 - PubMed
  70. J Neurosci. 2002 Oct 1;22(19):8633-46 - PubMed
  71. Vision Res. 1982;22(5):545-59 - PubMed
  72. Vision Res. 1974 Aug;14(8):735-7 - PubMed
  73. Vision Res. 2004;44(22):2629-41 - PubMed
  74. Cereb Cortex. 2007 May;17(5):1100-16 - PubMed
  75. Front Psychol. 2014 Mar 14;5:195 - PubMed
  76. Vision Res. 2014 Feb;95:18-22 - PubMed

Publication Types