Display options
Share it on

Materials (Basel). 2021 May 27;14(11). doi: 10.3390/ma14112886.

Nonequilibrium Dynamics of a Magnetic Nanocapsule in a Nematic Liquid Crystal.

Materials (Basel, Switzerland)

José Armendáriz, Humberto Híjar

Affiliations

  1. Engineering of School, La Salle University Mexico, Benjamin Franklin 45, Mexico City 06140, Mexico.

PMID: 34072175 PMCID: PMC8199132 DOI: 10.3390/ma14112886

Abstract

Colloidal particles in nematic liquid crystals show a beautiful variety of complex phenomena with promising applications. Their dynamical behaviour is determined by topology and interactions with the liquid crystal and external fields. Here, a nematic magnetic nanocapsule reoriented periodically by time-varying magnetic fields is studied using numerical simulations. The approach combines Molecular Dynamics to resolve solute-solvent interactions and Nematic Multiparticle Collision Dynamics to incorporate nematohydrodynamic fields and fluctuations. A Saturn ring defect resulting from homeotropic anchoring conditions surrounds the capsule and rotates together with it. Magnetically induced rotations of the capsule can produce transformations of this topological defect, which changes from a disclination curve to a defect structure extending over the surface of the capsule. Transformations occur for large magnetic fields. At moderate fields, elastic torques prevent changes of the topological defect by tilting the capsule out from the rotation plane of the magnetic field.

Keywords: multiscale simulation methods; nematic colloids; rotational Brownian motion; topological defects

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):020201 - PubMed
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012503 - PubMed
  3. Langmuir. 2019 Jul 16;35(28):9274-9285 - PubMed
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041702 - PubMed
  5. Phys Rev E. 2019 Jun;99(6-1):063319 - PubMed
  6. Soft Matter. 2021 Mar 28;17(12):3463-3472 - PubMed
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021702 - PubMed
  8. Phys Rev Lett. 2000 Nov 27;85(22):4719-22 - PubMed
  9. Sci Adv. 2016 Sep 16;2(9):e1600932 - PubMed
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022505 - PubMed
  11. Nature. 2013 Jan 10;493(7431):200-5 - PubMed
  12. Phys Rev Lett. 2007 Dec 7;99(23):237802 - PubMed
  13. Adv Mater. 2016 Apr 13;28(14):2731-6 - PubMed
  14. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9231-6 - PubMed
  15. Nat Commun. 2017 Jan 24;8:14026 - PubMed
  16. J Chem Phys. 2014 Feb 7;140(5):054905 - PubMed
  17. Soft Matter. 2014 Mar 28;10(12):2047-58 - PubMed
  18. Sci Rep. 2019 Jan 14;9(1):81 - PubMed
  19. Phys Rev E. 2020 Dec;102(6-1):062705 - PubMed
  20. Phys Rev Lett. 2006 Dec 1;97(22):227801 - PubMed
  21. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18804-8 - PubMed
  22. J Chem Phys. 2015 Apr 28;142(16):164110 - PubMed
  23. Materials (Basel). 2019 Dec 04;12(24): - PubMed
  24. J Phys Condens Matter. 2010 Mar 17;22(10):104106 - PubMed
  25. Science. 2009 Nov 20;326(5956):1083-6 - PubMed
  26. Soft Matter. 2019 Sep 21;15(35):6913-6929 - PubMed
  27. Phys Rev Lett. 2001 Oct 15;87(16):165503 - PubMed
  28. Soft Matter. 2015 Jul 7;11(25):5101-10 - PubMed
  29. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031402 - PubMed
  30. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jul;50(1):358-367 - PubMed
  31. Science. 2004 Jan 30;303(5658):652-5 - PubMed
  32. Materials (Basel). 2017 Dec 25;11(1): - PubMed
  33. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011711 - PubMed
  34. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021705 - PubMed
  35. Nat Commun. 2018 Sep 21;9(1):3841 - PubMed
  36. Phys Rev Lett. 2004 Oct 29;93(18):187801 - PubMed

Publication Types

Grant support