Display options
Share it on

J Immunother Cancer. 2021 May;9(5). doi: 10.1136/jitc-2021-002694.

Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs).

Journal for immunotherapy of cancer

Concetta Ragone, Carmen Manolio, Beatrice Cavalluzzo, Angela Mauriello, Maria Lina Tornesello, Franco M Buonaguro, Filippo Castiglione, Luigi Vitagliano, Emanuela Iaccarino, Menotti Ruvo, Maria Tagliamonte, Luigi Buonaguro

Affiliations

  1. Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy.
  2. Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy.
  3. Institute for Applied Computing, CNR, Roma, Italy.
  4. Institute for Biostructures and Bioimages, CNR, Roma, Italy.
  5. Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy [email protected] [email protected].

PMID: 34049932 PMCID: PMC8166618 DOI: 10.1136/jitc-2021-002694

Abstract

BACKGROUND: The host's immune system develops in equilibrium with both cellular self-antigens and non-self-antigens derived from microorganisms which enter the body during lifetime. In addition, during the years, a tumor may arise presenting to the immune system an additional pool of non-self-antigens, namely tumor antigens (tumor-associated antigens, TAAs; tumor-specific antigens, TSAs).

METHODS: In the present study, we looked for homology between published TAAs and non-self-viral-derived epitopes. Bioinformatics analyses and ex vivo immunological validations have been performed.

RESULTS: Surprisingly, several of such homologies have been found. Moreover, structural similarities between paired TAAs and viral peptides as well as comparable patterns of contact with HLA and T cell receptor (TCR) α and β chains have been observed. Therefore, the two classes of non-self-antigens (viral antigens and tumor antigens) may converge, eliciting cross-reacting CD8

CONCLUSIONS: An established antiviral T cell memory may turn out to be an anticancer T cell memory, able to control the growth of a cancer developed during the lifetime if the expressed TAA is similar to the viral epitope. This may ultimately represent a relevant selective advantage for patients with cancer and may lead to a novel preventive anticancer vaccine strategy.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Keywords: CD8-positive T-lymphocytes; antigens; cellular; immunity; immunotherapy; vaccination

Conflict of interest statement

Competing interests: None declared.

References

  1. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20422-7 - PubMed
  2. Oncoimmunology. 2014 Dec 02;3(12):e970914 - PubMed
  3. J Immunol. 2014 Mar 15;192(6):2885-91 - PubMed
  4. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2346-50 - PubMed
  5. Cell. 1987 Sep 11;50(6):819-20 - PubMed
  6. J Transl Med. 2018 Oct 19;16(1):286 - PubMed
  7. Semin Immunopathol. 2019 Jan;41(1):69-85 - PubMed
  8. Expert Opin Biol Ther. 2003 Sep;3(6):985-93 - PubMed
  9. J Immunol. 1996 Sep 15;157(6):2539-48 - PubMed
  10. J Virol. 2009 Jan;83(1):304-13 - PubMed
  11. Immunology. 2009 Feb;126(2):165-76 - PubMed
  12. Prostate. 1989;15(1):13-21 - PubMed
  13. J Clin Invest. 2015 Sep;125(9):3401-12 - PubMed
  14. Cancer Res. 2003 Apr 1;63(7):1560-7 - PubMed
  15. Nat Rev Clin Oncol. 2014 Sep;11(9):509-24 - PubMed
  16. N Engl J Med. 2014 Dec 4;371(23):2189-2199 - PubMed
  17. Science. 2015 Apr 3;348(6230):124-8 - PubMed
  18. Nat Rev Cancer. 2005 Aug;5(8):615-25 - PubMed
  19. J Mol Biol. 1996 Mar 1;256(3):623-44 - PubMed
  20. J Exp Med. 1997 Mar 3;185(5):833-41 - PubMed
  21. Vaccine. 2011 Jul 12;29(31):4903-12 - PubMed
  22. Int J Cancer. 2010 Jul 15;127(2):381-93 - PubMed
  23. BMC Bioinformatics. 2013 Apr 15;14:127 - PubMed
  24. J Clin Oncol. 2009 Oct 1;27(28):4685-92 - PubMed
  25. J Immunol. 2000 Jul 15;165(2):948-55 - PubMed
  26. Nature. 2017 Nov 23;551(7681):512-516 - PubMed
  27. Nucleic Acids Res. 2020 Jul 2;48(W1):W449-W454 - PubMed
  28. J Immunol. 2016 Aug 15;197(4):1517-24 - PubMed
  29. Clin Cancer Res. 2011 Feb 15;17(4):861-70 - PubMed
  30. Immunogenetics. 1994;39(2):121-9 - PubMed
  31. HIV Med. 2013 Sep;14(8):481-90 - PubMed
  32. Cell. 2014 May 22;157(5):1073-87 - PubMed
  33. Mol Ther. 2021 Jan 6;29(1):10-12 - PubMed
  34. J Natl Cancer Inst. 1997 Feb 19;89(4):293-300 - PubMed
  35. Oncoimmunology. 2016 Dec 7;6(2):e1252895 - PubMed
  36. Vaccines (Basel). 2020 Oct 17;8(4): - PubMed
  37. Oncotarget. 2016 May 3;7(18):25087-102 - PubMed
  38. Semin Oncol. 2015 Apr;42(2):247-57 - PubMed
  39. Expert Rev Vaccines. 2009 Oct;8(10):1379-98 - PubMed
  40. Immunity. 1999 Jun;10(6):673-9 - PubMed
  41. Immunol Res. 2011 Aug;50(2-3):261-8 - PubMed
  42. J Natl Cancer Inst. 2002 Jun 5;94(11):805-18 - PubMed
  43. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):136-40 - PubMed
  44. Science. 1985 Nov 29;230(4729):1043-5 - PubMed
  45. Genome Biol Evol. 2013;5(2):307-28 - PubMed
  46. PLoS One. 2010 Apr 16;5(4):e9862 - PubMed
  47. Oncoimmunology. 2015 Jan 9;4(4):e974411 - PubMed
  48. Cancer Res. 1998 Nov 1;58(21):4895-901 - PubMed

Publication Types