Display options
Share it on

Sci Adv. 2021 Jun 09;7(24). doi: 10.1126/sciadv.abg6677. Print 2021 Jun.

Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor.

Science advances

Eli J Cornblath, Howard L Li, Lakshmi Changolkar, Bin Zhang, Hannah J Brown, Ronald J Gathagan, Modupe F Olufemi, John Q Trojanowski, Danielle S Bassett, Virginia M Y Lee, Michael X Henderson

Affiliations

  1. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
  2. Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  3. Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  4. Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
  5. Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
  6. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  7. Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  8. Santa Fe Institute, Santa Fe, NM 87501, USA.
  9. Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA. [email protected].

PMID: 34108219 PMCID: PMC8189700 DOI: 10.1126/sciadv.abg6677

Abstract

Neuropathological staging studies have suggested that tau pathology spreads through the brain in Alzheimer's disease (AD) and other tauopathies, but it is unclear how neuroanatomical connections, spatial proximity, and regional vulnerability contribute. In this study, we seed tau pathology in the brains of nontransgenic mice with AD tau and quantify pathology development over 9 months in 134 brain regions. Network modeling of pathology progression shows that diffusion through the connectome is the best predictor of tau pathology patterns. Further, deviations from pure neuroanatomical spread are used to estimate regional vulnerability to tau pathology and identify related gene expression patterns. Last, we show that pathology spread is altered in mice harboring a mutation in leucine-rich repeat kinase 2. While tau pathology spread is still constrained by anatomical connectivity in these mice, it spreads preferentially in a retrograde direction. This study provides a framework for understanding neuropathological progression in tauopathies.

Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Neurobiol Aging. 2019 Apr;76:214.e1-214.e9 - PubMed
  2. J Neurosci. 2010 Feb 3;30(5):1788-97 - PubMed
  3. Ann Neurol. 2019 Feb;85(2):259-271 - PubMed
  4. Mov Disord. 2020 Jan;35(1):5-19 - PubMed
  5. Neurosci Biobehav Rev. 2020 May;112:1-27 - PubMed
  6. Acta Neuropathol. 2006 Oct;112(4):389-404 - PubMed
  7. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4689-4695 - PubMed
  8. Lancet Neurol. 2017 Jan;16(1):55-65 - PubMed
  9. Eur J Hum Genet. 2016 Aug;24(8):1188-94 - PubMed
  10. J Exp Med. 2016 Nov 14;213(12):2635-2654 - PubMed
  11. Lancet Neurol. 2019 Jan;18(1):88-106 - PubMed
  12. Acta Neuropathol. 1991;82(4):239-59 - PubMed
  13. Biochemistry. 2015 Aug 25;54(33):5198-208 - PubMed
  14. Neurobiol Dis. 2020 Feb;134:104623 - PubMed
  15. J Biol Chem. 2012 Feb 3;287(6):3842-9 - PubMed
  16. Neuron. 2012 Mar 22;73(6):1204-15 - PubMed
  17. Neuron. 2019 Dec 4;104(5):856-868.e5 - PubMed
  18. Neurobiol Dis. 2010 Dec;40(3):503-17 - PubMed
  19. Nat Neurosci. 2009 Jul;12(7):826-8 - PubMed
  20. Acta Neuropathol. 2013 Dec;126(6):809-27 - PubMed
  21. Hum Mol Genet. 2018 Jan 1;27(1):120-134 - PubMed
  22. J R Soc Interface. 2019 Oct 31;16(159):20190356 - PubMed
  23. Neurobiol Dis. 2018 Mar;111:26-35 - PubMed
  24. Mol Neurodegener. 2017 Jan 13;12(1):5 - PubMed
  25. Acta Neuropathol Commun. 2019 Nov 16;7(1):183 - PubMed
  26. Science. 2019 Feb 22;363(6429):880-884 - PubMed
  27. Cell Rep. 2018 May 15;23(7):2039-2055 - PubMed
  28. Hum Mol Genet. 2015 Jun 15;24(12):3545-56 - PubMed
  29. Neuroimage Clin. 2019;23:101848 - PubMed
  30. J Neurosci. 2015 Oct 21;35(42):14234-50 - PubMed
  31. PLoS One. 2012;7(1):e30834 - PubMed
  32. Lancet Neurol. 2018 Nov;17(11):939-953 - PubMed
  33. Brain. 2018 Jul 1;141(7):2181-2193 - PubMed
  34. J Neurosci Res. 2015 Oct;93(10):1567-80 - PubMed
  35. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):E3138-47 - PubMed
  36. Sci Rep. 2018 Apr 23;8(1):6382 - PubMed
  37. JAMA Neurol. 2015 Jan;72(1):100-5 - PubMed
  38. Front Cell Neurosci. 2014 Sep 26;8:301 - PubMed
  39. Lancet Neurol. 2008 Jul;7(7):583-90 - PubMed
  40. Nat Neurosci. 2019 Aug;22(8):1248-1257 - PubMed
  41. Nature. 2014 Apr 10;508(7495):207-14 - PubMed
  42. Ann Neurol. 2012 Oct;72(4):587-98 - PubMed
  43. J Neurosci. 2016 Jul 6;36(27):7128-41 - PubMed
  44. J Neurosci. 2010 Sep 29;30(39):13138-49 - PubMed
  45. Nat Neurosci. 2016 Aug;19(8):1085-92 - PubMed
  46. Acta Neuropathol Commun. 2017 Aug 14;5(1):61 - PubMed
  47. Nature. 2020 Apr;580(7803):381-385 - PubMed
  48. Hum Mol Genet. 2015 Sep 1;24(17):4879-900 - PubMed
  49. J Neurosci. 2017 Nov 22;37(47):11406-11423 - PubMed
  50. Nat Commun. 2020 May 26;11(1):2612 - PubMed
  51. Front Neurol. 2017 Dec 21;8:692 - PubMed
  52. Mov Disord. 2012 Jun;27(7):831-42 - PubMed

Publication Types