Display options
Share it on

Nat Commun. 2021 Jun 09;12(1):3470. doi: 10.1038/s41467-021-23454-9.

Entanglement of dark electron-nuclear spin defects in diamond.

Nature communications

M J Degen, S J H Loenen, H P Bartling, C E Bradley, A L Meinsma, M Markham, D J Twitchen, T H Taminiau

Affiliations

  1. QuTech, Delft University of Technology, Delft, The Netherlands.
  2. Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
  3. Element Six Innovation, Fermi Avenue, Harwell Oxford, Didcot, Oxfordshire, UK.
  4. QuTech, Delft University of Technology, Delft, The Netherlands. [email protected].
  5. Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands. [email protected].

PMID: 34108455 PMCID: PMC8190113 DOI: 10.1038/s41467-021-23454-9

Abstract

A promising approach for multi-qubit quantum registers is to use optically addressable spins to control multiple dark electron-spin defects in the environment. While recent experiments have observed signatures of coherent interactions with such dark spins, it is an open challenge to realize the individual control required for quantum information processing. Here, we demonstrate the heralded initialisation, control and entanglement of individual dark spins associated to multiple P1 centers, which are part of a spin bath surrounding a nitrogen-vacancy center in diamond. We realize projective measurements to prepare the multiple degrees of freedom of P1 centers-their Jahn-Teller axis, nuclear spin and charge state-and exploit these to selectively access multiple P1s in the bath. We develop control and single-shot readout of the nuclear and electron spin, and use this to demonstrate an entangled state of two P1 centers. These results provide a proof-of-principle towards using dark electron-nuclear spin defects as qubits for quantum sensing, computation and networks.

References

  1. Phys Rev Lett. 2006 Aug 25;97(8):087601 - PubMed
  2. Phys Rev Lett. 2019 Aug 2;123(5):050401 - PubMed
  3. Science. 2010 Jul 30;329(5991):542-4 - PubMed
  4. Nat Commun. 2018 Jun 29;9(1):2552 - PubMed
  5. Science. 2018 Jul 6;361(6397):60-63 - PubMed
  6. Phys Rev Lett. 2013 Mar 8;110(10):100503 - PubMed
  7. Phys Rev Lett. 2019 Oct 4;123(14):140402 - PubMed
  8. Phys Rev Lett. 2013 Apr 12;110(15):157601 - PubMed
  9. Phys Rev Lett. 2018 Jun 15;120(24):243604 - PubMed
  10. Phys Rev Lett. 2011 Apr 8;106(14):140502 - PubMed
  11. Nature. 2013 May 2;497(7447):86-90 - PubMed
  12. Science. 2014 Aug 1;345(6196):532-5 - PubMed
  13. Nat Commun. 2016 May 05;7:11526 - PubMed
  14. Nat Commun. 2020 Jan 10;11(1):193 - PubMed
  15. Phys Rev Lett. 2017 Apr 14;118(15):150504 - PubMed
  16. Nat Mater. 2014 Jan;13(1):21-5 - PubMed
  17. Nature. 2011 Nov 02;479(7371):84-7 - PubMed
  18. Phys Rev Lett. 2016 Sep 2;117(10):100802 - PubMed
  19. Nat Commun. 2013;4:1743 - PubMed
  20. Sci Adv. 2017 Aug 11;3(8):e1701116 - PubMed
  21. Nature. 2015 Oct 29;526(7575):682-6 - PubMed
  22. ACS Nano. 2015 Aug 25;9(8):7769-74 - PubMed
  23. Phys Rev Lett. 2017 Dec 1;119(22):223602 - PubMed
  24. Nat Nanotechnol. 2014 Apr;9(4):279-84 - PubMed
  25. Sci Rep. 2012;2:382 - PubMed
  26. Phys Rev Lett. 2013 Feb 8;110(6):060502 - PubMed
  27. Phys Rev Lett. 2020 Feb 28;124(8):083602 - PubMed
  28. Nat Commun. 2012 Apr 24;3:800 - PubMed
  29. Nat Commun. 2014 Feb 28;5:3371 - PubMed
  30. Nat Commun. 2019 Apr 26;10(1):1954 - PubMed
  31. Science. 2017 Jun 2;356(6341):928-932 - PubMed
  32. Nature. 2011 Sep 21;477(7366):574-8 - PubMed
  33. Nature. 2014 Feb 13;506(7487):204-7 - PubMed
  34. Science. 2016 Nov 18;354(6314):847-850 - PubMed

Publication Types