Display options
Share it on

Saudi Pharm J. 2021 May;29(5):446-455. doi: 10.1016/j.jsps.2021.04.007. Epub 2021 Apr 23.

Improved delivery of miR-1296 loaded cationic nanoliposomes for effective suppression of triple negative breast cancer.

Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society

Lamyaa Albakr, Fulwah Yahya Alqahtani, Fadilah Sfouq Aleanizy, Abdullah Alomrani, Mohammad Badran, Hussein Alhindas, Futwan Al-Mohanna

Affiliations

  1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  2. Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.

PMID: 34135670 PMCID: PMC8180610 DOI: 10.1016/j.jsps.2021.04.007

Abstract

Nowadays, microRNA is considered an attractive strategy for the effective treatment of cancer. A significant delivery of microRNA for cancer therapy remains a significant obstacle to target cancer cells. The restoring microRNA-1296 (miR-1296) has immense therapeutic efficacy in triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast tumors with the progression of malignant transformation. This study aimed to develop a cationic nanoliposome that can serve as a miR-1296 carrier and studied its efficiency in TNBC. The efficacy of miR-1296 liposomes was evaluated on its apoptotic effect, cellular uptake, and potential chemotherapy sensitization in the TNBC cell line (MDA-MB-231). For

© 2021 The Author(s).

Keywords: Cellular uptake; Liposomes; Triple-negative breast cancer; miR-1296

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Food Chem. 2021 Feb 1;337:127654 - PubMed
  2. Int J Mol Med. 2016 May;37(5):1345-54 - PubMed
  3. Int J Proteomics. 2012;2012:473843 - PubMed
  4. AAPS J. 2009 Mar;11(1):195-203 - PubMed
  5. Oncotarget. 2016 Apr 12;7(15):19519-30 - PubMed
  6. Int J Nanomedicine. 2016 Dec 12;11:6713-6725 - PubMed
  7. Oncol Rep. 2014 May;31(5):2147-56 - PubMed
  8. Carcinogenesis. 2014 Oct;35(10):2254-63 - PubMed
  9. Adv Drug Deliv Rev. 2015 Jan;81:128-41 - PubMed
  10. J Med Chem. 1989 Apr;32(4):788-92 - PubMed
  11. Adv Drug Deliv Rev. 2014 Feb;66:110-6 - PubMed
  12. Mol Cancer Res. 2015 Feb;13(2):330-8 - PubMed
  13. Nat Rev Drug Discov. 2010 Oct;9(10):775-89 - PubMed
  14. PLoS One. 2017 Jan 18;12(1):e0170298 - PubMed
  15. Cancer Res. 2010 Apr 1;70(7):2809-18 - PubMed
  16. Int J Pharm. 2017 Sep 15;530(1-2):387-400 - PubMed
  17. Nat Rev Drug Discov. 2017 Mar;16(3):203-222 - PubMed
  18. Cancer Lett. 2013 Jul 1;334(2):221-7 - PubMed
  19. Nat Rev Genet. 2014 Aug;15(8):541-55 - PubMed
  20. Curr Pharm Des. 2015;21(22):3140-7 - PubMed
  21. Mol Oncol. 2014 Dec;8(8):1690-702 - PubMed
  22. Cancer Cell Int. 2018 Jan 30;18:16 - PubMed
  23. Cancer Cell Int. 2017 Oct 24;17:95 - PubMed
  24. J Biomed Nanotechnol. 2016 Mar;12(3):554-68 - PubMed
  25. Int J Nanomedicine. 2014 Jun 18;9:2933-42 - PubMed
  26. Int J Mol Sci. 2013 Nov 11;14(11):22202-20 - PubMed
  27. Biochim Biophys Acta. 2012 Jul;1818(7):1603-12 - PubMed
  28. Mayo Clin Proc. 2018 Jun;93(6):794-807 - PubMed
  29. J Cancer. 2017 Sep 2;8(15):3037-3048 - PubMed
  30. Artif Cells Nanomed Biotechnol. 2018;46(sup1):684-692 - PubMed

Publication Types