Display options
Share it on

Dyes Pigm. 2019 Nov;170. doi: 10.1016/j.dyepig.2019.107662. Epub 2019 Jun 24.

BOPHYs .

Dyes and pigments : an international journal

R Sola-Llano, J Jiménez, E Avellanal-Zaballa, M Johnson, T A Cabreros, F Moreno, B L Maroto, G Muller, J Bañuelos, L Cerdán, I García-Moreno, S de la Moya

Affiliations

  1. Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain.
  2. Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
  3. Department of Chemistry, San José State University, San José, CA 95192-0101, USA.
  4. Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006, Madrid, Spain.

PMID: 34054163 PMCID: PMC8157502 DOI: 10.1016/j.dyepig.2019.107662

Abstract

The computationally-aided photophysical and lasing properties of a selected battery of BOPHYs are described and compared to those of related BODIPY counterparts. The present joined theoretical-experimental study helps to put into context the weaknesses and strengths of both dye families under different irradiation conditions. The chemical versatility of the BOPHY scaffold has been also comparatively explored to modulate key photonic properties towards the development of red-emitting dyes, chiroptical dyes and singlet oxygen photosensitizers. Thus, BOPHY BINOLation by fluorine substitution with enantiopure BINOLs endows the BOPHY chromophore with chiroptical activity, as supporting by the simulated circular dichroism, decreasing deeply its fluorescent response due to the promotion of fluorescence-quenching intramolecular charge transfer (ICT). Interestingly, the sole alkylation of the BOPHY core strongly modulates the promotion of ICT, allowing the generation of highly bright BINOL-based BOPHY dyes. Moreover, 3,3'-dibromoBINOLating BOPHYs can easily achieve singlet-oxygen photogeneration, owing to spin-orbit coupling mediated by heavy-atom effect feasible in view of the theoretically predicted disposition of the bromines surrounding the chromophore. From this background, we have established the master guidelines to design bright fluorophores and laser dyes, photosensitizers for singlet oxygen production and chiroptical dyes based on BOPHYs. The possibility to finely mix and balance such properties in a given molecular scaffold outstands BOPHYs as promising dyes competing with the well-settled BODIPY dyes.

Keywords: Charge transfer; Chiral dyes; Fluorescence; Laser dyes; Organic synthesis; Photosensitizers

References

  1. Chemistry. 2015 Sep 21;21(39):13488-500 - PubMed
  2. Chem Rev. 2011 Dec 14;111(12):7941-80 - PubMed
  3. Org Lett. 2014 Jun 6;16(11):3048-51 - PubMed
  4. J Am Chem Soc. 2014 Mar 5;136(9):3346-9 - PubMed
  5. J Org Chem. 2016 Nov 18;81(22):11316-11323 - PubMed
  6. Chem Soc Rev. 2015 Jul 21;44(14):4953-72 - PubMed
  7. Chem Commun (Camb). 2019 Jan 31;55(11):1631-1634 - PubMed
  8. J Org Chem. 2018 Feb 2;83(3):1134-1145 - PubMed
  9. Org Lett. 2015 May 1;17(9):2246-9 - PubMed
  10. Chem Rev. 2016 Nov 9;116(21):12823-12864 - PubMed
  11. J Am Chem Soc. 2014 Apr 16;136(15):5623-6 - PubMed
  12. Chem Commun (Camb). 2015 May 28;51(43):9014-7 - PubMed
  13. Chem Rev. 2010 May 12;110(5):2839-57 - PubMed
  14. Chem Soc Rev. 2013 Apr 7;42(7):2930-62 - PubMed
  15. J Phys Chem A. 2007 Sep 6;111(35):8588-97 - PubMed
  16. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8067-93 - PubMed
  17. Chemistry. 2017 Oct 20;23(59):14786-14796 - PubMed
  18. J Org Chem. 2007 Jan 5;72(1):269-72 - PubMed
  19. Microporous Mesoporous Mater. 2013 Mar 15;169:222-234 - PubMed
  20. Chem Rev. 2010 May 12;110(5):2579-619 - PubMed
  21. Chem Rec. 2016 Feb;16(1):335-48 - PubMed
  22. Chem Rev. 2007 Nov;107(11):4891-932 - PubMed
  23. Angew Chem Int Ed Engl. 2008;47(7):1184-201 - PubMed
  24. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8034-53 - PubMed
  25. Org Lett. 2009 Oct 15;11(20):4644-7 - PubMed
  26. Chem Soc Rev. 2014 May 21;43(10):3342-405 - PubMed
  27. Biochem J. 2016 Feb 15;473(4):347-64 - PubMed
  28. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Apr 5;212:380-387 - PubMed
  29. J Chem Theory Comput. 2016 Feb 9;12(2):459-65 - PubMed
  30. Small. 2016 Apr;12(15):1968-92 - PubMed
  31. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8054-66 - PubMed
  32. Chemistry. 2011 Jun 20;17(26):7261-70 - PubMed
  33. Chem Soc Rev. 2013 Jan 7;42(1):77-88 - PubMed
  34. Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3758-3769 - PubMed
  35. Chem Commun (Camb). 2015 Oct 11;51(79):14742-5 - PubMed
  36. Dalton Trans. 2017 Sep 12;46(35):11830-11839 - PubMed
  37. Chem Soc Rev. 2013 Jun 21;42(12):5323-51 - PubMed

Publication Types

Grant support