Display options
Share it on

ACS Med Chem Lett. 2021 May 03;12(5):713-719. doi: 10.1021/acsmedchemlett.0c00609. eCollection 2021 May 13.

De Novo Design, Synthesis, and Mechanistic Evaluation of Short Peptides That Mimic Heat Shock Protein 27 Activity.

ACS medicinal chemistry letters

Jessica Kho, P Chi Pham, Suhyeon Kwon, Alana Y Huang, Joel P Rivers, Huixin Wang, Heath Ecroyd, W Alexander Donald, Shelli R McAlpine

Affiliations

  1. School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
  2. Department of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
  3. School of Chemistry, University of California Irvine, Irvine, California 92697, United States.

PMID: 34055216 PMCID: PMC8155270 DOI: 10.1021/acsmedchemlett.0c00609

Abstract

We report the first small molecule peptides based on the N-terminal sequence of heat shock protein 27 (Hsp27, gene HSPB1) that demonstrates chaperone-like activity. The peptide, comprising the SWDPF sequence located at Hsp27's amino (N)-terminal domain, directly regulates protein aggregation events, maintaining the disaggregated state of the model protein, citrate synthase. While traditional inhibitors of protein aggregation act via regulation of a protein that facilitates aggregation or disaggregation, our molecules are the first small peptides between 5 and 8 amino acids in length that are based on the N-terminus of Hsp27 and directly control protein aggregation. The presented strategy showcases a new approach for developing small peptides that control protein aggregation in proteins with high aggregate levels, making them a useful approach in developing new drugs.

© 2021 American Chemical Society.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Biochemistry. 2005 Nov 15;44(45):14854-69 - PubMed
  2. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1562-70 - PubMed
  3. Chem Commun (Camb). 2016 Jan 11;52(3):501-4 - PubMed
  4. Chem Biol. 2015 Feb 19;22(2):186-95 - PubMed
  5. PLoS One. 2012;7(9):e44077 - PubMed
  6. Methods Enzymol. 1998;290:323-38 - PubMed
  7. Nat Genet. 2000 Jul;25(3):294-7 - PubMed
  8. J Biol Chem. 2009 Jul 10;284(28):18801-7 - PubMed
  9. Cell Stress Chaperones. 2005 Summer;10(2):86-103 - PubMed
  10. Annu Rev Biochem. 2006;75:333-66 - PubMed
  11. Ann Oncol. 2016 Jun;27(6):1116-1122 - PubMed
  12. Biochim Biophys Acta. 2009 Aug;1793(8):1343-53 - PubMed
  13. ACS Med Chem Lett. 2017 Dec 13;9(2):73-77 - PubMed
  14. Expert Opin Investig Drugs. 2017 Jun;26(6):735-739 - PubMed
  15. J Biol Chem. 1993 Jan 25;268(3):1517-20 - PubMed
  16. Neurology. 2008 Nov 18;71(21):1660-8 - PubMed
  17. Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):246-51 - PubMed
  18. Anal Biochem. 2016 Sep 1;508:9-11 - PubMed
  19. Biochemistry. 2006 Mar 7;45(9):3069-76 - PubMed
  20. Protein Sci. 2012 Jan;21(1):122-33 - PubMed
  21. Science. 2008 Feb 15;319(5865):916-9 - PubMed
  22. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6409-14 - PubMed
  23. Biochemistry. 2012 Feb 14;51(6):1257-68 - PubMed
  24. J Med Chem. 2019 Jan 24;62(2):742-761 - PubMed
  25. Biochemistry. 2014 Apr 29;53(16):2615-23 - PubMed
  26. Biochemistry. 2015 Jan 20;54(2):505-15 - PubMed
  27. J Mol Biol. 2017 Jan 6;429(1):128-141 - PubMed
  28. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360-4 - PubMed
  29. J Mol Biol. 2004 Oct 15;343(2):445-55 - PubMed
  30. J Neurol Sci. 1993 Nov;119(2):203-8 - PubMed
  31. Prog Mol Subcell Biol. 2002;28:37-59 - PubMed
  32. Nat Genet. 2004 Jun;36(6):602-6 - PubMed

Publication Types