Display options
Share it on

Nanomicro Lett. 2020 Apr 13;12(1):90. doi: 10.1007/s40820-020-00428-y.

Artificial Nanoscale Erythrocytes from Clinically Relevant Compounds for Enhancing Cancer Immunotherapy.

Nano-micro letters

Wenquan Ou, Kang Sik Nam, Dae Hoon Park, Jungho Hwang, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim, Jeong Hoon Byeon

Affiliations

  1. College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
  2. School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
  3. School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea. [email protected].
  4. College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
  5. College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea. [email protected].
  6. School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea. [email protected].

PMID: 34138119 PMCID: PMC7770689 DOI: 10.1007/s40820-020-00428-y

Abstract

Because of enhanced efficacy and lower side effects, cancer immunotherapies have recently been extensively investigated in clinical trials to overcome the limitations of conventional cancer monotherapies. Although engineering attempts have been made to build nanosystems even including stimulus nanomaterials for the efficient delivery of antigens, adjuvants, or anticancer drugs to improve immunogenic cancer cell death, this requires huge R&D efforts and investment for clinically relevant findings to be approved for translation of the nanosystems. To this end, in this study, an air-liquid two-phase electrospray was developed for stable bubble pressing under a balance between mechanical and electrical parameters of the spray to continuously produce biomimetic nanosystems consisting of only clinically relevant compounds [paclitaxel-loaded fake blood cell Eudragit particle (Eu-FBCP/PTX)] to provide a conceptual leap for the timely development of translatable chemo-immunotherapeutic nanosystems. This was pursued as the efficacy of systems for delivering anticancer agents that has been mainly influenced by nanosystem shape because of its relevance to transporting behavior to organs, blood circulation, and cell-membrane interactions. The resulting Eu-FBCP/PTX nanosystems exhibiting phagocytic and micropinocytic uptake behaviors can confer better efficacy in chemo-immunotherapeutics in the absence and presence of anti-PD-L1 antibodies than similar sized PTX-loaded spherical Eu particles (Eu-s/PTX).

Keywords: Air–liquid two-phase electrospray; Anti-PD-L1 antibodies; Cancer immunotherapies; Paclitaxel-loaded fake blood cell Eudragit particle; Translatable chemo-immunotherapeutic nanosystems

References

  1. ACS Nano. 2014 Jun 24;8(6):5725-37 - PubMed
  2. Nat Rev Immunol. 2017 Feb;17(2):97-111 - PubMed
  3. Annu Rev Immunol. 2013;31:51-72 - PubMed
  4. Nanomedicine (Lond). 2014 Jan;9(1):121-34 - PubMed
  5. Br J Cancer. 2018 Jan;118(1):9-16 - PubMed
  6. J R Soc Interface. 2009 Mar 6;6(32):271-7 - PubMed
  7. J Control Release. 2017 Jun 28;256:26-45 - PubMed
  8. Cancer Cell. 2015 Dec 14;28(6):690-714 - PubMed
  9. Theranostics. 2018 Aug 10;8(17):4574-4590 - PubMed
  10. Nat Commun. 2017 Nov 27;8(1):1811 - PubMed
  11. ACS Nano. 2013 Mar 26;7(3):1961-73 - PubMed
  12. Toxicol Sci. 2009 Jul;110(1):138-55 - PubMed
  13. Pharm Res. 2009 Jan;26(1):235-43 - PubMed
  14. Nat Med. 2007 Jan;13(1):54-61 - PubMed
  15. J Chem Phys. 2009 Nov 14;131(18):184502 - PubMed
  16. N Engl J Med. 2018 Nov 29;379(22):2108-2121 - PubMed
  17. Small. 2015 Nov 4;11(41):5483-96 - PubMed
  18. Drug Dev Ind Pharm. 2013 Jul;39(7):1113-25 - PubMed
  19. J Control Release. 2018 Sep 28;286:369-380 - PubMed
  20. Clin Cancer Res. 2006 Apr 15;12(8):2390-3 - PubMed
  21. J Biol Chem. 2010 Jul 16;285(29):22461-72 - PubMed
  22. Clin Chim Acta. 2019 May;492:12-19 - PubMed
  23. N Engl J Med. 2018 Nov 22;379(21):2040-2051 - PubMed
  24. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3543-8 - PubMed
  25. Nat Rev Immunol. 2007 Jul;7(7):543-55 - PubMed
  26. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):586-91 - PubMed
  27. Nat Commun. 2019 Apr 23;10(1):1899 - PubMed
  28. Annu Rev Biomed Eng. 2017 Jun 21;19:57-84 - PubMed
  29. Adv Healthc Mater. 2016 Oct;5(20):2628-2635 - PubMed
  30. Oncogene. 2006 Aug 7;25(34):4798-811 - PubMed
  31. J Am Chem Soc. 2014 Sep 24;136(38):13138-41 - PubMed
  32. Biomaterials. 2017 Dec;148:69-80 - PubMed
  33. ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11167-11176 - PubMed
  34. Mater Today (Kidlington). 2016 Nov;19(9):516-532 - PubMed
  35. J Control Release. 2018 Mar 28;274:24-34 - PubMed
  36. Acc Chem Res. 2019 May 21;52(5):1255-1264 - PubMed
  37. Adv Mater. 2012 Jul 24;24(28):3757-78 - PubMed
  38. Nat Rev Cancer. 2012 Dec;12(12):860-75 - PubMed
  39. Nat Mater. 2019 Jan;18(1):82-89 - PubMed
  40. ACS Nano. 2018 Oct 23;12(10):10061-10074 - PubMed
  41. Biomacromolecules. 2018 Jun 11;19(6):2098-2108 - PubMed
  42. J Am Chem Soc. 2013 Nov 20;135(46):17617-29 - PubMed
  43. Cell Death Differ. 2006 Sep;13(9):1423-33 - PubMed
  44. Nat Commun. 2016 Oct 21;7:13193 - PubMed
  45. Biochim Biophys Acta Rev Cancer. 2019 Jan;1871(1):99-108 - PubMed
  46. Chem Soc Rev. 2017 Jul 17;46(14):4218-4244 - PubMed
  47. J Colloid Interface Sci. 2011 Sep 15;361(2):423-8 - PubMed
  48. ACS Nano. 2019 Feb 26;13(2):1365-1384 - PubMed
  49. J Control Release. 2018 Oct 28;288:239-263 - PubMed
  50. Med Biol Eng Comput. 2007 Aug;45(8):781-9 - PubMed

Publication Types