Display options
Share it on

Nanomicro Lett. 2020 Sep 27;12(1):185. doi: 10.1007/s40820-020-00523-0.

Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation.

Nano-micro letters

Laurens Raes, Stephan Stremersch, Juan C Fraire, Toon Brans, Glenn Goetgeluk, Stijn De Munter, Lien Van Hoecke, Rein Verbeke, Jelter Van Hoeck, Ranhua Xiong, Xavier Saelens, Bart Vandekerckhove, Stefaan De Smedt, Koen Raemdonck, Kevin Braeckmans

Affiliations

  1. Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium.
  2. Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
  3. Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium.
  4. VIB-UGent Center for Medical Biotechnology, 9052, Ghent, Belgium.
  5. Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
  6. Department of Biochemistry and Microbiology, Ghent University, 9000, Ghent, Belgium.
  7. Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, 9000, Ghent, Belgium. [email protected].
  8. Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium. [email protected].

PMID: 34138203 PMCID: PMC7770675 DOI: 10.1007/s40820-020-00523-0

Abstract

Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.

Keywords: Gold nanoparticles; Optoporation; Photoporation; Transfection; Vapor nanobubbles; mRNA

References

  1. Expert Rev Vaccines. 2015 Feb;14(2):235-51 - PubMed
  2. Nat Commun. 2018 Oct 30;9(1):4518 - PubMed
  3. Mol Ther Methods Clin Dev. 2016 Dec 31;4:92-101 - PubMed
  4. J Biophotonics. 2014 Jul;7(7):474-82 - PubMed
  5. Int J Mol Sci. 2018 Aug 14;19(8): - PubMed
  6. PLoS One. 2011;6(11):e27677 - PubMed
  7. Nat Biotechnol. 2020 Feb;38(2):233-244 - PubMed
  8. Nano Lett. 2016 Oct 12;16(10):5975-5986 - PubMed
  9. N Engl J Med. 2018 Feb 1;378(5):439-448 - PubMed
  10. Nanomedicine (Lond). 2014 Oct;9(15):2353-70 - PubMed
  11. Nat Rev Cancer. 2019 Oct;19(10):587-602 - PubMed
  12. J Control Release. 2020 Mar 10;319:262-275 - PubMed
  13. Biophys J. 2013 Aug 20;105(4):862-71 - PubMed
  14. ACS Nano. 2010 Apr 27;4(4):2109-23 - PubMed
  15. Cancer Gene Ther. 2009 Jun;16(6):489-97 - PubMed
  16. N Engl J Med. 2014 Oct 16;371(16):1507-17 - PubMed
  17. Lancet. 2015 Feb 7;385(9967):517-528 - PubMed
  18. J Immunol Methods. 2011 Sep 30;372(1-2):22-9 - PubMed
  19. Hum Gene Ther. 2008 May;19(5):511-21 - PubMed
  20. Nat Commun. 2018 Aug 24;9(1):3417 - PubMed
  21. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10907-E10914 - PubMed
  22. J R Soc Interface. 2010 Jun 6;7(47):863-71 - PubMed
  23. J Immunol Methods. 2014 Jun;408:123-31 - PubMed
  24. Front Cell Neurosci. 2018 Mar 29;12:80 - PubMed
  25. Nat Rev Drug Discov. 2014 Oct;13(10):759-80 - PubMed
  26. J Control Release. 2019 Jul 10;305:165-175 - PubMed
  27. J Control Release. 2017 Nov 28;266:198-204 - PubMed
  28. Nat Rev Immunol. 2004 Apr;4(4):301-8 - PubMed
  29. Nature. 2016 Oct 12;538(7624):183-192 - PubMed
  30. Cancer Med. 2019 Aug;8(9):4254-4264 - PubMed
  31. Mol Ther. 2019 Apr 10;27(4):747-756 - PubMed
  32. Hum Gene Ther. 2019 Feb;30(2):168-178 - PubMed
  33. Int J Mol Sci. 2019 Aug 30;20(17): - PubMed
  34. J Control Release. 2011 Jan 5;149(1):65-71 - PubMed
  35. Mol Ther. 2019 Feb 6;27(2):287-299 - PubMed
  36. Cell. 2016 Feb 11;164(4):770-9 - PubMed
  37. J Control Release. 2017 Dec 10;267:154-162 - PubMed
  38. Mol Ther Oncolytics. 2016 Jun 15;3:16015 - PubMed
  39. Gene Ther. 2013 Feb;20(2):136-42 - PubMed
  40. J Control Release. 2013 Aug 28;170(1):83-91 - PubMed
  41. N Engl J Med. 2017 Dec 28;377(26):2545-2554 - PubMed
  42. Nat Methods. 2006 Jun;3(6):455-60 - PubMed
  43. Curr Opin Biotechnol. 2018 Oct;53:164-181 - PubMed
  44. Integr Biol (Camb). 2014 Apr;6(4):470-5 - PubMed
  45. J Control Release. 2018 Jul 28;282:140-147 - PubMed
  46. Mol Ther Methods Clin Dev. 2020 Jan 31;16:238-254 - PubMed
  47. Nat Biomed Eng. 2018 Jun;2(6):362-376 - PubMed
  48. Drug Discov Today. 2016 Jan;21(1):11-25 - PubMed
  49. Mol Ther. 2006 Jan;13(1):151-9 - PubMed
  50. Adv Funct Mater. 2015 Jul 15;25(27):4183-4194 - PubMed
  51. In Vitro Cell Dev Biol Anim. 1997 Jul-Aug;33(7):553-61 - PubMed
  52. ACS Nano. 2014 Jun 24;8(6):6288-96 - PubMed
  53. Nat Biotechnol. 2015 Sep;33(9):985-989 - PubMed
  54. Cancer Immunol Res. 2017 Dec;5(12):1152-1161 - PubMed
  55. N Engl J Med. 2017 Dec 28;377(26):2531-2544 - PubMed
  56. Cancer Res. 2010 Nov 15;70(22):9053-61 - PubMed
  57. Nanoscale. 2015 May 21;7(19):9083-91 - PubMed
  58. Chem Rev. 2018 Aug 22;118(16):7409-7531 - PubMed
  59. Science. 2020 Feb 28;367(6481): - PubMed
  60. PLoS One. 2013 May 07;8(5):e63037 - PubMed
  61. Sci Rep. 2019 Mar 1;9(1):3214 - PubMed
  62. Light Sci Appl. 2018 Aug 8;7:47 - PubMed
  63. J Autoimmun. 2007 Dec;29(4):303-9 - PubMed
  64. Nat Nanotechnol. 2010 Aug;5(8):607-11 - PubMed
  65. Nano Lett. 2016 May 11;16(5):3187-94 - PubMed

Publication Types