Display options
Share it on

Blood. 2021 Oct 21;138(16):1465-1480. doi: 10.1182/blood.2020009871.

Activated natural killer cells predict poor clinical prognosis in high-risk B- and T-cell acute lymphoblastic leukemia.

Blood

Caroline Duault, Anil Kumar, Adeleh Taghi Khani, Sung June Lee, Lu Yang, Min Huang, Christian Hurtz, Bryan Manning, Lucy Ghoda, Tinisha McDonald, Norman J Lacayo, Kathleen M Sakamoto, Martin Carroll, Sarah K Tasian, Guido Marcucci, Jianhua Yu, Michael A Caligiuri, Holden T Maecker, Srividya Swaminathan

Affiliations

  1. The Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA.
  2. Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA.
  3. Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA.
  4. Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
  5. Department of Hematological Malignancies and Translational Science, Beckman Research Institute of City of Hope, Duarte, CA.
  6. Division of Oncology and Center for Childhood Cancer Research, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; and.
  7. Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA.

PMID: 34077953 PMCID: PMC8532198 DOI: 10.1182/blood.2020009871

Abstract

B- and T-cell acute lymphoblastic leukemia (B/T-ALL) may be refractory or recur after therapy by suppressing host anticancer immune surveillance mediated specifically by natural killer (NK) cells. We delineated the phenotypic and functional defects in NK cells from high-risk patients with B/T-ALL using mass cytometry, flow cytometry, and in silico cytometry, with the goal of further elucidating the role of NK cells in sustaining acute lymphoblastic leukemia (ALL) regression. We found that, compared with their normal counterparts, NK cells from patients with B/T-ALL are less cytotoxic but exhibit an activated signature that is characterized by high CD56, high CD69, production of activated NK cell-origin cytokines, and calcium (Ca2+) signaling. We demonstrated that defective maturation of NK cells into cytotoxic effectors prevents NK cells from ALL from lysing NK cell-sensitive targets as efficiently as do normal NK cells. Additionally, we showed that NK cells in ALL are exhausted, which is likely caused by their chronic activation. We found that increased frequencies of activated cytokine-producing NK cells are associated with increased disease severity and independently predict poor clinical outcome in patients with ALL. Our studies highlight the benefits of developing NK cell profiling as a diagnostic tool to predict clinical outcome in patients with ALL and underscore the clinical potential of allogeneic NK cell infusions to prevent ALL recurrence.

© 2021 by The American Society of Hematology.

References

  1. Cancer Discov. 2015 Dec;5(12):1282-95 - PubMed
  2. Curr Opin Oncol. 2010 Mar;22(2):130-7 - PubMed
  3. Blood Cancer J. 2017 Jun 30;7(6):e577 - PubMed
  4. Front Immunol. 2018 Aug 13;9:1869 - PubMed
  5. Sci Transl Med. 2014 Feb 19;6(224):224ra25 - PubMed
  6. Cell. 2020 Oct 1;183(1):126-142.e17 - PubMed
  7. Nat Commun. 2019 Sep 2;10(1):3931 - PubMed
  8. Blood. 2010 Aug 26;116(8):1299-307 - PubMed
  9. Bone Marrow Transplant. 2003 Jul;32(2):177-86 - PubMed
  10. N Engl J Med. 2014 Oct 16;371(16):1507-17 - PubMed
  11. Blood Adv. 2019 Jun 11;3(11):1681-1694 - PubMed
  12. Lancet. 2015 Feb 7;385(9967):517-528 - PubMed
  13. Scand J Immunol. 2016 Sep;84(3):182-90 - PubMed
  14. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15278-9 - PubMed
  15. Blood. 2010 Feb 18;115(7):1394-405 - PubMed
  16. Clin Lymphoma Myeloma. 2009;9 Suppl 3:S222-30 - PubMed
  17. Clin Exp Immunol. 2020 Aug;201(2):161-170 - PubMed
  18. Bone Marrow Transplant. 2019 Aug;54(Suppl 2):721-726 - PubMed
  19. Annu Rev Immunol. 1984;2:359-94 - PubMed
  20. J Clin Invest. 2017 Nov 1;127(11):4042-4058 - PubMed
  21. Sci Transl Med. 2013 Mar 20;5(177):177ra38 - PubMed
  22. J Clin Oncol. 2010 May 20;28(15):2529-37 - PubMed
  23. Nat Methods. 2015 May;12(5):453-7 - PubMed
  24. Immunology. 1999 May;97(1):159-65 - PubMed
  25. Immunity. 2018 Nov 20;49(5):971-986.e5 - PubMed
  26. Autophagy. 2015 Feb 25;:0 - PubMed
  27. Blood. 2010 Jan 14;115(2):274-81 - PubMed
  28. Cancer Res. 2014 Dec 1;74(23):6820-32 - PubMed
  29. J Hematol Oncol. 2019 Feb 8;12(1):15 - PubMed
  30. Front Immunol. 2015 Nov 17;6:578 - PubMed
  31. N Engl J Med. 1998 Oct 22;339(17):1186-93 - PubMed
  32. Blood. 2013 Aug 8;122(6):1017-25 - PubMed
  33. EMBO Mol Med. 2017 Sep;9(9):1183-1197 - PubMed
  34. Science. 2002 Mar 15;295(5562):2097-100 - PubMed
  35. Cell Mol Immunol. 2020 Apr;17(4):347-355 - PubMed
  36. Front Immunol. 2020 Feb 13;11:167 - PubMed
  37. Front Immunol. 2012 Nov 09;3:335 - PubMed
  38. PLoS One. 2019 Jul 8;14(7):e0219449 - PubMed
  39. Nat Rev Cancer. 2020 Dec;20(12):743-756 - PubMed
  40. Nat Commun. 2020 May 5;11(1):2213 - PubMed
  41. J Immunol Res. 2020 Apr 6;2020:6243819 - PubMed
  42. Front Immunol. 2018 Jul 04;9:1553 - PubMed
  43. Int Immunol. 2008 Apr;20(4):625-30 - PubMed
  44. Clin Cancer Res. 2011 Oct 1;17(19):6287-97 - PubMed
  45. Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):200-215 - PubMed
  46. Blood. 2000 Jul 15;96(2):594-600 - PubMed
  47. Semin Immunol. 2014 Apr;26(2):173-9 - PubMed
  48. Br J Haematol. 2008 Sep;142(5):802-7 - PubMed
  49. Blood. 2009 Oct 29;114(18):3822-30 - PubMed
  50. J Physiol. 2018 Jul;596(14):2681-2698 - PubMed
  51. Nat Genet. 2003 Jul;34(3):267-73 - PubMed
  52. Trends Immunol. 2017 Jul;38(7):513-525 - PubMed
  53. Front Immunol. 2019 May 31;10:1205 - PubMed
  54. Nat Rev Clin Oncol. 2019 Jun;16(6):372-385 - PubMed
  55. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  56. Science. 2011 May 6;332(6030):687-96 - PubMed
  57. Leukemia. 2018 Feb;32(2):520-531 - PubMed
  58. N Engl J Med. 2001 Apr 5;344(14):1038-42 - PubMed
  59. Cancer Cell. 2019 Dec 9;36(6):660-673.e11 - PubMed
  60. J Clin Oncol. 2010 Feb 20;28(6):955-9 - PubMed
  61. Front Immunol. 2017 May 31;8:631 - PubMed
  62. Semin Immunol. 2014 Apr;26(2):132-7 - PubMed
  63. Trends Cancer. 2018 Feb;4(2):110-118 - PubMed
  64. Am J Cancer Res. 2018 Jun 01;8(6):1083-1089 - PubMed
  65. J Hematol Oncol. 2019 Dec 29;12(1):141 - PubMed
  66. Bio Protoc. 2015 Jan 5;5(1): - PubMed
  67. Curr Protoc Cytom. 2010 Jul;Chapter 10:Unit10.17 - PubMed
  68. Trends Immunol. 2020 Oct;41(10):878-901 - PubMed
  69. Sci Data. 2019 Oct 21;6(1):214 - PubMed
  70. Blood. 2010 Nov 11;116(19):3865-74 - PubMed
  71. Leukemia. 2014 Apr;28(4):917-27 - PubMed
  72. Mol Ther. 2017 Aug 2;25(8):1769-1781 - PubMed
  73. Blood. 2001 May 15;97(10):3146-51 - PubMed
  74. Eur J Immunol. 2001 Oct;31(10):3121-7 - PubMed
  75. Lancet Oncol. 2013 May;14(6):e205-17 - PubMed
  76. Cytotherapy. 2011 Jan;13(1):98-107 - PubMed
  77. BMC Genomics. 2009 Mar 05;10:98 - PubMed
  78. Blood. 2010 Jul 1;115(26):5312-21 - PubMed
  79. Cancer Cell. 2020 Jun 8;37(6):867-882.e12 - PubMed
  80. EBioMedicine. 2020 Sep;59:102975 - PubMed
  81. Blood. 2011 Sep 22;118(12):3273-9 - PubMed
  82. Mayo Clin Proc. 2016 Nov;91(11):1645-1666 - PubMed
  83. Nat Immunol. 2008 May;9(5):503-10 - PubMed
  84. J Clin Invest. 2019 Jun 18;129(9):3770-3785 - PubMed
  85. Immunol Cell Biol. 2014 Mar;92(3):237-44 - PubMed
  86. Blood. 2010 Dec 2;116(23):4874-84 - PubMed
  87. Genome Biol. 2017 Nov 15;18(1):220 - PubMed
  88. Nat Commun. 2020 Jun 5;11(1):2860 - PubMed
  89. Nature. 2019 Apr;568(7750):112-116 - PubMed
  90. Blood. 2016 May 19;127(20):2406-10 - PubMed
  91. J Immunol. 2016 Apr 1;196(7):2923-31 - PubMed
  92. Immunotherapy. 2011 Dec;3(12):1445-59 - PubMed
  93. Immunology. 2011 Jul;133(3):350-9 - PubMed

Publication Types

Grant support