Display options
Share it on

Front Physiol. 2021 May 25;12:623599. doi: 10.3389/fphys.2021.623599. eCollection 2021.

Augmented Respiratory-Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease.

Frontiers in physiology

Manash Saha, Qi-Jian Sun, Cara M Hildreth, Peter G R Burke, Jacqueline K Phillips

Affiliations

  1. Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.
  2. Department of Nephrology, National Institute of Kidney Disease and Urology, Dhaka, Bangladesh.
  3. Graduate School of Medicine, Wollongong University, Wollongong, NSW, Australia.
  4. Neuroscience Research Australia, Sydney, NSW, Australia.

PMID: 34113258 PMCID: PMC8185289 DOI: 10.3389/fphys.2021.623599

Abstract

Carotid body feedback and hypoxia may serve to enhance respiratory-sympathetic nerve coupling (respSNA) and act as a driver of increased blood pressure. Using the Lewis polycystic kidney (LPK) rat model of chronic kidney disease, we examined respSNA in adult female rodents with CKD and their response to acute hypoxia or hypercapnia compared to Lewis control animals. Under urethane anesthesia, phrenic nerve activity, splanchnic sympathetic nerve activity (sSNA), and renal sympathetic nerve activity (rSNA) were recorded under baseline conditions and during mild hypoxic or hypercapnic challenges. At baseline, tonic SNA and blood pressure were greater in female LPK rats versus Lewis rats (all

Copyright © 2021 Saha, Sun, Hildreth, Burke and Phillips.

Keywords: chemoreflex; chronic kidney disease; female; hypercapnia; hypertension; hypoxia; respiratory sympathetic modulation

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Exp Physiol. 2016 Nov 1;101(11):1345-1358 - PubMed
  2. J Neurosci. 2019 Dec 4;39(49):9757-9766 - PubMed
  3. Neuroscience. 2010 May 5;167(2):528-39 - PubMed
  4. Kidney Blood Press Res. 2014;39(2-3):142-6 - PubMed
  5. Am J Physiol Regul Integr Comp Physiol. 2011 Oct;301(4):R1112-22 - PubMed
  6. J Physiol. 2016 Mar 15;594(6):1529-51 - PubMed
  7. J Physiol. 2014 Jan 15;592(2):391-408 - PubMed
  8. Adv Exp Med Biol. 2010;669:143-9 - PubMed
  9. Hypertension. 2005 Jun;45(6):1159-64 - PubMed
  10. BMJ. 2013 Jan 29;346:f324 - PubMed
  11. Physiol Rep. 2019 Mar;7(6):e14041 - PubMed
  12. Am J Physiol. 1989 Mar;256(3 Pt 2):R739-50 - PubMed
  13. Respir Physiol Neurobiol. 2018 Oct;256:109-118 - PubMed
  14. Circulation. 1998 Mar 17;97(10):943-5 - PubMed
  15. J Physiol. 2006 Apr 15;572(Pt 2):503-23 - PubMed
  16. Kidney Blood Press Res. 2007;30(3):129-44 - PubMed
  17. J Am Soc Nephrol. 2006 Jul;17(7):2034-47 - PubMed
  18. Circulation. 1999 Mar 9;99(9):1183-9 - PubMed
  19. Sci Rep. 2018 Mar 28;8(1):5317 - PubMed
  20. J Physiol. 1990 Jul;426:355-68 - PubMed
  21. Am J Physiol Heart Circ Physiol. 2016 May 1;310(9):H1222-32 - PubMed
  22. Physiology (Bethesda). 2014 Jan;29(1):8-15 - PubMed
  23. Hypertension. 1979 Nov-Dec;1(6):598-604 - PubMed
  24. Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R396-402 - PubMed
  25. Exp Physiol. 2015 Mar;100(3):249-58 - PubMed
  26. Am J Physiol Regul Integr Comp Physiol. 2018 Nov 1;315(5):R963-R971 - PubMed
  27. Hypertension. 2013 Jan;61(1):5-13 - PubMed
  28. Respir Physiol Neurobiol. 2010 Nov 30;174(1-2):98-101 - PubMed
  29. Respir Physiol Neurobiol. 2019 Apr;262:57-66 - PubMed
  30. J Hypertens. 2007 Jan;25(1):157-61 - PubMed
  31. PLoS One. 2012;7(5):e36943 - PubMed
  32. Am J Physiol Heart Circ Physiol. 2013 Nov 15;305(10):H1407-16 - PubMed
  33. J Neurosci. 2013 Dec 4;33(49):19223-37 - PubMed
  34. Respir Physiol Neurobiol. 2013 Jan 1;185(1):156-69 - PubMed
  35. J Physiol. 2009 Jan 15;587(2):461-75 - PubMed
  36. Circ Res. 2010 Feb 19;106(3):536-45 - PubMed
  37. J Physiol. 2018 Aug;596(15):3171-3185 - PubMed
  38. Nat Rev Neurosci. 2006 May;7(5):335-46 - PubMed
  39. J Hypertens. 2015 Jun;33(6):1249-60 - PubMed
  40. Circ Res. 1976 Jun;38(6 Suppl 2):21-9 - PubMed
  41. J Neurophysiol. 2019 Jul 1;122(1):358-367 - PubMed
  42. J Hypertens. 2015 Jul;33(7):1418-28 - PubMed
  43. J Neurosci. 2015 Jan 14;35(2):527-43 - PubMed
  44. J Physiol. 2015 Jul 1;593(13):2909-26 - PubMed
  45. Exp Physiol. 2010 May;95(5):587-94 - PubMed
  46. PLoS One. 2013 Apr 08;8(4):e60695 - PubMed
  47. J Physiol. 2009 Feb 1;587(3):597-610 - PubMed
  48. Hypertension. 2014 Apr;63(4):804-10 - PubMed
  49. Am J Physiol Regul Integr Comp Physiol. 2014 Feb 15;306(4):R248-56 - PubMed
  50. Hypertens Res. 2012 May;35(5):487-91 - PubMed
  51. J Physiol. 2014 May 1;592(9):2013-33 - PubMed
  52. Am J Physiol Regul Integr Comp Physiol. 2004 Jun;286(6):R1121-8 - PubMed
  53. J Physiol. 2012 Sep 1;590(17):4269-77 - PubMed
  54. BMC Nephrol. 2012 Dec 03;13:162 - PubMed
  55. Am J Physiol. 1988 Dec;255(6 Pt 2):R1041-8 - PubMed
  56. Front Physiol. 2015 Aug 04;6:218 - PubMed
  57. Neurosci Biobehav Rev. 2011 Jan;35(3):565-72 - PubMed
  58. J Physiol. 2008 Jul 1;586(13):3253-65 - PubMed
  59. Front Neurosci. 2016 Feb 04;10:4 - PubMed
  60. Am J Physiol. 1996 Nov;271(5 Pt 2):H1840-8 - PubMed
  61. Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2454-65 - PubMed
  62. Exp Physiol. 2010 Jan;95(1):41-50 - PubMed

Publication Types