Display options
Share it on

Front Pharmacol. 2021 May 17;12:634477. doi: 10.3389/fphar.2021.634477. eCollection 2021.

Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes.

Frontiers in pharmacology

Tracy Gasperetti, Tessa Miller, Feng Gao, Jayashree Narayanan, Elizabeth R Jacobs, Aniko Szabo, George N Cox, Christie M Orschell, Brian L Fish, Meetha Medhora

Affiliations

  1. Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.
  2. Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.
  3. Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.
  4. Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.
  5. Department of Veterans Affairs, Research Service, Zablocki VAMC, Milwaukee, WI, United States.
  6. Institute for Health and Equity, Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States.
  7. Bolder BioTechnology Inc., Boulder, CO, United States.
  8. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.

PMID: 34079456 PMCID: PMC8165380 DOI: 10.3389/fphar.2021.634477

Abstract

There is a need for countermeasures to mitigate lethal acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE). In WAG/RijCmcr rats, ARS occurs by 30-days following total body irradiation (TBI), and manifests as potentially lethal gastrointestinal (GI) and hematopoietic (H-ARS) toxicities after >12.5 and >7 Gy, respectively. DEARE, which includes potentially lethal lung and kidney injuries, is observed after partial body irradiation >12.5 Gy, with one hind limb shielded (leg-out PBI). The goal of this study is to enhance survival from ARS and DEARE by polypharmacy, since no monotherapy has demonstrated efficacy to mitigate both sets of injuries. For mitigation of ARS following 7.5 Gy TBI, a combination of three hematopoietic growth factors (polyethylene glycol (PEG) human granulocyte colony-stimulating factor (hG-CSF), PEG murine granulocyte-macrophage-CSF (mGM-CSF), and PEG human Interleukin (hIL)-11), which have shown survival efficacy in murine models of H-ARS were tested. This triple combination (TC) enhanced survival by 30-days from ∼25% to >60%. The TC was then combined with proven medical countermeasures for GI-ARS and DEARE, namely enrofloxacin, saline and the angiotensin converting enzyme inhibitor, lisinopril. This combination of ARS and DEARE mitigators improved survival from GI-ARS, H-ARS, and DEARE after 7.5 Gy TBI or 13 Gy PBI. Circulating blood cell recovery as well as lung and kidney function were also improved by TC + lisinopril. Taken together these results demonstrate an efficacious polypharmacy to mitigate radiation-induced ARS and DEARE in rats.

Copyright © 2021 Gasperetti, Miller, Gao, Narayanan, Jacobs, Szabo, Cox, Orschell, Fish and Medhora.

Keywords: acute radiation syndrome; delayed effects of acute radiation exposure; hematopoietic growth factor; lisinopril; mitigation; polypharmacy; radiation pneumonitis; supportive care

Conflict of interest statement

GC is an employee of Bolder BioTechnology, Inc. and has a financial interest in the company. GC and CO are inventors on patents related to use of PEG-HGFs to treat ARS. GC, CO, BF, and MM are inventor

References

  1. Sci Rep. 2019 Feb 18;9(1):2198 - PubMed
  2. J Cancer. 2018 May 25;9(12):2123-2131 - PubMed
  3. Toxicol Pathol. 2003 Nov-Dec;31(6):665-73 - PubMed
  4. Exp Hematol. 2010 Apr;38(4):270-81 - PubMed
  5. Clin Lung Cancer. 2016 May;17(3):189-97 - PubMed
  6. Int Immunopharmacol. 2013 Feb;15(2):348-56 - PubMed
  7. J Radiat Res. 2015 Mar;56(2):248-60 - PubMed
  8. Radiat Res. 2017 Jun;187(6):659-671 - PubMed
  9. Int J Radiat Biol. 2014 Sep;90(9):753-61 - PubMed
  10. J Am Soc Nephrol. 1999 Jan;10 Suppl 11:S2-7 - PubMed
  11. J Radiat Res. 2012;53(1):10-7 - PubMed
  12. Am J Physiol Renal Physiol. 2012 Oct 15;303(8):F1216-24 - PubMed
  13. Blood Adv. 2020 Oct 13;4(19):4965-4979 - PubMed
  14. Int J Radiat Oncol Biol Phys. 2011 Sep 1;81(1):97-103 - PubMed
  15. Health Phys. 2014 Jan;106(1):21-38 - PubMed
  16. Int J Radiat Oncol Biol Phys. 2019 Mar 1;103(3):686-696 - PubMed
  17. J Radiat Res. 2012 Jul;53(4):633-40 - PubMed
  18. Int J Radiat Biol. 2020 Jan;96(1):81-92 - PubMed
  19. Health Phys. 2019 Apr;116(4):529-545 - PubMed
  20. Health Phys. 2018 Jul;115(1):65-76 - PubMed
  21. J Lab Clin Med. 1994 Sep;124(3):371-80 - PubMed
  22. Health Phys. 2015 Nov;109(5):511-21 - PubMed
  23. Int J Radiat Oncol Biol Phys. 2011 Jul 15;80(4):1023-9 - PubMed
  24. Radiat Res. 2008 Jun;169(6):712-21 - PubMed
  25. Exp Hematol. 2011 Mar;39(3):293-304 - PubMed
  26. Radiat Res. 2014 Nov;182(5):545-55 - PubMed
  27. Health Phys. 2014 Aug;107(2):164-71 - PubMed
  28. Protein J. 2020 Apr;39(2):160-173 - PubMed
  29. N Engl J Med. 1996 Jun 20;334(25):1649-54 - PubMed
  30. Med Phys. 2001 Jun;28(6):868-93 - PubMed
  31. J Immunol. 1988 Jan 1;140(1):108-11 - PubMed
  32. Health Phys. 2014 Jan;106(1):7-20 - PubMed
  33. Disaster Med Public Health Prep. 2011 Mar;5 Suppl 1:S32-44 - PubMed
  34. Radiat Res. 2011 Jan;175(1):29-36 - PubMed
  35. Health Phys. 2016 Nov;111(5):410-9 - PubMed
  36. Int J Radiat Oncol Biol Phys. 1993 Sep 1;27(1):93-9 - PubMed
  37. Health Phys. 2012 Oct;103(4):343-55 - PubMed
  38. Expert Opin Pharmacother. 2020 Feb;21(3):317-337 - PubMed
  39. Int J Mol Sci. 2020 May 30;21(11): - PubMed
  40. Biotherapy. 1988;1(1):41-5 - PubMed
  41. Radiat Res. 2013 Nov;180(5):546-52 - PubMed
  42. Int J Radiat Biol. 2008 Sep;84(9):713-26 - PubMed
  43. Mutat Res Rev Mutat Res. 2016 Oct - Dec;770(Pt B):319-327 - PubMed
  44. Am J Clin Oncol. 2018 Apr;41(4):396-401 - PubMed
  45. Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):238-43 - PubMed

Publication Types