Display options
Share it on

Anal Methods. 2019 Mar 28;11(12):1620-1630. doi: 10.1039/c8ay02737d. Epub 2019 Feb 19.

Polymer Modified Carbon Fiber-Microelectrodes and Waveform Modifications Enhance Neurotransmitter Metabolite Detection.

Analytical methods : advancing methods and applications

Dilpreet Raju, Alexander Mendoza, Pauline Wonnenberg, Sanuja Mohanaraj, Mulugeta Sarbanes, Carly Truong, Alexander G Zestos

Affiliations

  1. Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016.

PMID: 34079589 PMCID: PMC8168831 DOI: 10.1039/c8ay02737d

Abstract

Carbon-fiber microelectrodes (CFMEs) have been used for several years for the detection of neurotransmitters such as dopamine. Dopamine is a fundamentally important neurotransmitter and is also metabolized at a subsecond timescale. Recently, several metabolites of dopamine have been shown to be physiologically important such as 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA). Many of these neurotransmitter metabolites are currently only detected with microdialysis coupled with liquid chromatography with relatively low temporal and spatial resolution. Current electrochemical methods such as the dopamine waveform (scanning from -0.4 to 1.3 V at 400 V/sec) are utilized to electrostatically repel anions such as DOPAC and promote dopamine adsorption to the surface of the electrode. Moreover, polymer coatings such as Nafion have been shown to electrostatically repel anions such as 5-hydroxyindoleacetic acid (5-HIAA). In this study, we develop novel polymer and waveform modifications for enhanced DOPAC detection. Applying the DOPAC waveform (scanning from 0 to 1.3 V at 400 V/sec) enhances DOPAC detection significantly because it does not include the negative holding potential of the dopamine waveform. Moreover, positively charged cationic polymers such as polyethyleneimine (PEI) allow for the preconcentration of DOPAC to the surface of the carbon fiber through an electrostatic attraction. The limit of detection for DOPAC for PEI coated CFMEs with the DOPAC waveform applied is 58.2 ± 2 nM as opposed to 291 ± 10 nM for unmodified electrodes applying the dopamine waveform (n = 4). This work offers promise for the development of novel electrode materials and waveforms for the specific detection of several important biomolecules such as dopamine metabolite neurotransmitters.

Conflict of interest statement

Conflicts of Interest There are no conflicts to declare.

References

  1. Anal Bioanal Chem. 2009 May;394(1):329-36 - PubMed
  2. ACS Chem Neurosci. 2016 Mar 16;7(3):407-14 - PubMed
  3. Acta Psychiatr Scand Suppl. 1990;360:29-34 - PubMed
  4. Nature. 2002 Jul 4;418(6893):50-6 - PubMed
  5. Analyst. 2011 Sep 7;136(17):3550-6 - PubMed
  6. Anal Chem. 2010 Mar 1;82(5):2020-8 - PubMed
  7. Life Sci. 1978 Nov 27;23(22):2219-24 - PubMed
  8. ACS Chem Neurosci. 2010 Oct 1;1(12):775-787 - PubMed
  9. J Am Chem Soc. 2016 Mar 2;138(8):2516-9 - PubMed
  10. Anal Chem. 2000 Dec 15;72(24):5994-6002 - PubMed
  11. Anal Chem. 2004 Oct 1;76(19):5697-704 - PubMed
  12. Eur J Pharmacol. 1988 Apr 13;148(3):327-34 - PubMed
  13. Anal Chem. 2014 Aug 5;86(15):7486-93 - PubMed
  14. Neuroendocrinology. 1993 Jul;58(1):16-22 - PubMed
  15. J Neurol Sci. 1973 Dec;20(4):415-55 - PubMed
  16. Brain Res. 1985 Apr 29;333(1):143-6 - PubMed
  17. Analyst. 2016 Apr 21;141(8):2405-11 - PubMed
  18. Anal Chem. 2016 Jan 5;88(1):645-52 - PubMed
  19. Anal Chem. 2013 Sep 17;85(18):8780-6 - PubMed
  20. Anal Chem. 2009 Nov 15;81(22):9462-71 - PubMed
  21. Anal Chem. 2010 Dec 1;82(23):9892-900 - PubMed
  22. PLoS One. 2010 Oct 18;5(10):e13452 - PubMed
  23. Anal Chem. 2014 Aug 5;86(15):7806-12 - PubMed
  24. Anal Chem. 2010 Jun 15;82(12):5205-10 - PubMed
  25. ACS Chem Neurosci. 2017 Feb 15;8(2):386-393 - PubMed
  26. Analyst. 2011 Sep 7;136(17):3557-65 - PubMed
  27. Anal Chem. 2015 Mar 3;87(5):2600-7 - PubMed
  28. ACS Chem Neurosci. 2016 Jun 15;7(6):757-66 - PubMed
  29. Anal Chem. 2014 Sep 2;86(17):8568-75 - PubMed
  30. Chemphyschem. 2018 May 22;19(10):1197-1204 - PubMed
  31. Neuropharmacology. 1986 Apr;25(4):451-4 - PubMed
  32. Anal Chem. 2011 May 1;83(9):3563-71 - PubMed
  33. Analyst. 2009 Jan;134(1):18-24 - PubMed
  34. Anal Chem. 2018 Jan 2;90(1):888-895 - PubMed
  35. J Neurochem. 1994 Sep;63(3):972-9 - PubMed
  36. Anal Chem. 2012 Sep 18;84(18):7816-22 - PubMed
  37. Pharmacol Rev. 1988 Sep;40(3):163-87 - PubMed
  38. Anal Methods. 2013;5(11):2704-2711 - PubMed
  39. ACS Chem Neurosci. 2011 Nov 16;2(11):658-666 - PubMed
  40. J Neural Transm (Vienna). 2005 Sep;112(9):1213-21 - PubMed
  41. Neuropsychopharmacology. 2017 Sep;42(10):1940-1949 - PubMed
  42. Brain Res. 1995 Mar 13;674(1):163-6 - PubMed
  43. Bipolar Disord. 2007 Sep;9(6):561-70 - PubMed
  44. Sens Actuators B Chem. 2013 Jun;182:652-658 - PubMed
  45. Langmuir. 2010 Jun 1;26(11):9116-22 - PubMed

Publication Types

Grant support