Display options
Share it on

PeerJ Comput Sci. 2021 May 18;7:e542. doi: 10.7717/peerj-cs.542. eCollection 2021.

Landmark-free, parametric hypothesis tests regarding two-dimensional contour shapes using coherent point drift registration and statistical parametric mapping.

PeerJ. Computer science

Todd C Pataky, Masahide Yagi, Noriaki Ichihashi, Philip G Cox

Affiliations

  1. Department of Human Health Sciences, Kyoto University, Kyoto, Japan.
  2. Department of Archaeology, University of York, York, United Kingdom.
  3. Hull York Medical School, University of York, York, United Kingdom.

PMID: 34084938 PMCID: PMC8157043 DOI: 10.7717/peerj-cs.542

Abstract

This paper proposes a computational framework for automated, landmark-free hypothesis testing of 2D contour shapes (i.e., shape outlines), and implements one realization of that framework. The proposed framework consists of point set registration, point correspondence determination, and parametric full-shape hypothesis testing. The results are calculated quickly (<2 s), yield morphologically rich detail in an easy-to-understand visualization, and are complimented by parametrically (or nonparametrically) calculated probability values. These probability values represent the likelihood that, in the absence of a true shape effect, smooth, random Gaussian shape changes would yield an effect as large as the observed one. This proposed framework nevertheless possesses a number of limitations, including sensitivity to algorithm parameters. As a number of algorithms and algorithm parameters could be substituted at each stage in the proposed data processing chain, sensitivity analysis would be necessary for robust statistical conclusions. In this paper, the proposed technique is applied to nine public datasets using a two-sample design, and an ANCOVA design is then applied to a synthetic dataset to demonstrate how the proposed method generalizes to the family of classical hypothesis tests. Extension to the analysis of 3D shapes is discussed.

©2021 Pataky et al.

Keywords: 2D shape analysis; Classical hypothesis testing; Morphology; Morphometrics; Spatial registration; Statistical analysis

Conflict of interest statement

Philip G. Cox was an Academic Editor for PeerJ.

References

  1. PeerJ. 2017 Nov 21;5:e4090 - PubMed
  2. IEEE Trans Med Imaging. 2008 Jan;27(1):111-28 - PubMed
  3. J Morphol. 2016 May;277(5):556-64 - PubMed
  4. Med Image Anal. 1997 Apr;1(3):225-43 - PubMed
  5. Evol Biol. 2020 Sep;47(3):246-259 - PubMed
  6. J Biomech. 2008 Aug 28;41(12):2772-5 - PubMed
  7. IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2262-75 - PubMed
  8. Proc Biol Sci. 2005 Mar 22;272(1563):609-17 - PubMed
  9. PLoS One. 2013 Apr 04;8(4):e61298 - PubMed
  10. Gait Posture. 2014;40(1):255-8 - PubMed
  11. Ann Anat. 2016 Jan;203:59-68 - PubMed
  12. J Anat. 2011 Oct;219(4):444-55 - PubMed
  13. Comput Methods Biomech Biomed Engin. 2012;15(3):295-301 - PubMed
  14. J Hum Evol. 2003 Jun;44(6):665-83 - PubMed
  15. J Orthop Res. 2018 Jan;36(1):330-341 - PubMed
  16. Anat Rec (Hoboken). 2015 Jan;298(1):48-63 - PubMed
  17. Evolution. 1998 Oct;52(5):1363-1375 - PubMed
  18. Trends Ecol Evol. 1993 Aug;8(8):302-3 - PubMed
  19. Front Zool. 2015 Dec 01;12:33 - PubMed
  20. J Morphol. 2019 May;280(5):687-700 - PubMed
  21. Trends Ecol Evol. 1993 Apr;8(4):129-32 - PubMed
  22. Nat Methods. 2015 Mar;12(3):179-85 - PubMed
  23. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  24. J Hum Evol. 2004 Jun;46(6):679-97 - PubMed
  25. Dev Genes Evol. 2016 Jun;226(3):139-58 - PubMed
  26. Bull Math Biol. 1996 Mar;58(2):313-65 - PubMed
  27. Anat Rec (Hoboken). 2015 Jan;298(1):29-47 - PubMed
  28. Neuroimage. 2010 Nov 1;53(2):491-505 - PubMed
  29. Am J Phys Anthropol. 2000 Apr;111(4):463-78 - PubMed
  30. J Morphol. 2005 Jan;263(1):47-59 - PubMed
  31. Hum Brain Mapp. 2002 Jan;15(1):1-25 - PubMed
  32. IEEE Trans Pattern Anal Mach Intell. 2009 Apr;31(4):607-26 - PubMed
  33. Heredity (Edinb). 2015 Oct;115(4):357-65 - PubMed
  34. Curr Top Dev Biol. 2015;115:561-97 - PubMed

Publication Types