Display options
Share it on

J Exp Clin Cancer Res. 2021 Jun 21;40(1):198. doi: 10.1186/s13046-021-01986-8.

Integrated multi-omics analyses on patient-derived CRC organoids highlight altered molecular pathways in colorectal cancer progression involving PTEN.

Journal of experimental & clinical cancer research : CR

Marta Codrich, Emiliano Dalla, Catia Mio, Giulia Antoniali, Matilde Clarissa Malfatti, Stefania Marzinotto, Mariaelena Pierobon, Elisa Baldelli, Carla Di Loreto, Giuseppe Damante, Giovanni Terrosu, Carlo Ennio Michele Pucillo, Gianluca Tell

Affiliations

  1. Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy.
  2. Institute of Medical Genetics, Department of Medicine, University of Udine, 33100, Udine, Italy.
  3. Piattaforma Specializzata Centro Servizi e Laboratori, Area Biologia Molecolare, Colture Cellulari e Supporto, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy.
  4. School of Systems Biology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20108, USA.
  5. Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20108, USA.
  6. Pathology Unit, Department of Medicine, University of Udine, 33100, Udine, Italy.
  7. General Surgery and Transplantation Unit, Department of Medicine, University of Udine, 33100, Udine, Italy.
  8. Laboratory of Immunology, Department of Medicine, University of Udine, 33100, Udine, Italy.
  9. Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100, Udine, Italy. [email protected].

PMID: 34154611 PMCID: PMC8215814 DOI: 10.1186/s13046-021-01986-8

Abstract

BACKGROUND: Colorectal cancer (CRC) represents the fourth leading cause of cancer-related deaths. The heterogeneity of CRC identity limits the usage of cell lines to study this type of tumor because of the limited representation of multiple features of the original malignancy. Patient-derived colon organoids (PDCOs) are a promising 3D-cell model to study tumor identity for personalized medicine, although this approach still lacks detailed characterization regarding molecular stability during culturing conditions. Correlation analysis that considers genomic, transcriptomic, and proteomic data, as well as thawing, timing, and culturing conditions, is missing.

METHODS: Through integrated multi-omics strategies, we characterized PDCOs under different growing and timing conditions, to define their ability to recapitulate the original tumor.

RESULTS: Whole Exome Sequencing allowed detecting temporal acquisition of somatic variants, in a patient-specific manner, having deleterious effects on driver genes CRC-associated. Moreover, the targeted NGS approach confirmed that organoids faithfully recapitulated patients' tumor tissue. Using RNA-seq experiments, we identified 5125 differentially expressed transcripts in tumor versus normal organoids at different time points, in which the PTEN pathway resulted of particular interest, as also confirmed by further phospho-proteomics analysis. Interestingly, we identified the PTEN c.806_817dup (NM_000314) mutation, which has never been reported previously and is predicted to be deleterious according to the American College of Medical Genetics and Genomics (ACMG) classification.

CONCLUSION: The crosstalk of genomic, transcriptomic and phosphoproteomic data allowed to observe that PDCOs recapitulate, at the molecular level, the tumor of origin, accumulating mutations over time that potentially mimic the evolution of the patient's tumor, underlining relevant potentialities of this 3D model.

Keywords: Colorectal cancer; Organoids; PTEN; RNA-seq; Whole exosome sequencing

References

  1. DNA Repair (Amst). 2019 Oct;82:102675 - PubMed
  2. Nature. 2009 May 14;459(7244):262-5 - PubMed
  3. PLoS Genet. 2018 Oct 15;14(10):e1007678 - PubMed
  4. Gastroenterology. 2010 Jun;138(6):2073-2087.e3 - PubMed
  5. Nat Rev Dis Primers. 2015 Nov 05;1:15065 - PubMed
  6. Cell Mol Gastroenterol Hepatol. 2020;10(3):491-506 - PubMed
  7. Curr Colorectal Cancer Rep. 2012 Dec;8(4):316-324 - PubMed
  8. Science. 2018 Feb 23;359(6378):920-926 - PubMed
  9. Lancet. 2019 Oct 19;394(10207):1467-1480 - PubMed
  10. Med Sci (Basel). 2018 Apr 13;6(2): - PubMed
  11. Cancer Sci. 2019 Jan;110(1):345-355 - PubMed
  12. Curr Protoc Protein Sci. 2014 Feb 03;75:27.7.1-27.7.29 - PubMed
  13. Oncotarget. 2015 Oct 20;6(32):32368-79 - PubMed
  14. Cancer Biol Med. 2016 Mar;13(1):120-35 - PubMed
  15. Comput Struct Biotechnol J. 2020 Jan 07;18:177-188 - PubMed
  16. Nat Protoc. 2015 Oct;10(10):1556-66 - PubMed
  17. Gastroenterology. 2011 Nov;141(5):1762-72 - PubMed
  18. Clin Cancer Res. 2017 Aug 15;23(16):4919-4928 - PubMed
  19. Exp Cell Res. 2011 Jul 15;317(12):1746-62 - PubMed
  20. Nat Rev Gastroenterol Hepatol. 2020 Apr;17(4):203-222 - PubMed
  21. Cell Signal. 2009 May;21(5):665-74 - PubMed
  22. Gene. 2020 Apr 15;734:144391 - PubMed
  23. Nat Rev Cancer. 2008 Oct;8(10):806-12 - PubMed
  24. Food Chem Toxicol. 2017 Aug;106(Pt B):583-594 - PubMed
  25. Cell Stem Cell. 2020 Jan 2;26(1):17-26.e6 - PubMed
  26. Nat Methods. 2020 Mar;17(3):335-342 - PubMed
  27. Int J Exp Pathol. 2012 Oct;93(5):305-18 - PubMed
  28. Oncotarget. 2017 Jan 31;8(33):54199-54214 - PubMed
  29. Prz Gastroenterol. 2019;14(2):89-103 - PubMed
  30. Mol Aspects Med. 2019 Oct;69:27-40 - PubMed
  31. Sci Transl Med. 2019 Oct 9;11(513): - PubMed
  32. Cell. 2015 May 7;161(4):933-45 - PubMed
  33. Oncogene. 2006 Mar 13;25(11):1679-91 - PubMed
  34. World J Gastroenterol. 2017 Jul 7;23(25):4480-4490 - PubMed
  35. World J Gastroenterol. 2013 Dec 28;19(48):9307-17 - PubMed
  36. Nat Commun. 2017 Oct 6;8(1):797 - PubMed
  37. Bioinformatics. 2009 Oct 1;25(19):2607-8 - PubMed
  38. Cell. 2015 Jun 18;161(7):1539-1552 - PubMed
  39. Gastroenterology. 2020 Jan;158(2):322-340 - PubMed
  40. Curr Colorectal Cancer Rep. 2017 Apr;13(2):101-110 - PubMed
  41. Mol Aspects Med. 2019 Oct;69:10-26 - PubMed
  42. Nat Med. 2013 May;19(5):619-25 - PubMed
  43. Cell Rep. 2017 Jan 3;18(1):263-274 - PubMed
  44. Methods Mol Biol. 2017;1606:149-169 - PubMed
  45. Cancer Res. 2000 Dec 15;60(24):7033-8 - PubMed
  46. Nat Rev Genet. 2018 Nov;19(11):671-687 - PubMed
  47. Nature. 2012 Jul 18;487(7407):330-7 - PubMed
  48. Methods Mol Biol. 2017;1606:51-70 - PubMed
  49. J Gastrointest Cancer. 2020 Jun;51(2):387-400 - PubMed
  50. Nat Rev Gastroenterol Hepatol. 2020 Feb;17(2):111-130 - PubMed
  51. Mutagenesis. 2020 Feb 13;35(1):129-149 - PubMed
  52. Signal Transduct Target Ther. 2017 Jan 06;2:16036 - PubMed
  53. Front Oncol. 2014 Jan 16;3:326 - PubMed
  54. Nat Commun. 2020 Jan 20;11(1):393 - PubMed
  55. Genes Dis. 2014 Sep;1(1):87-105 - PubMed
  56. Database (Oxford). 2016 Jul 03;2016: - PubMed
  57. Nature. 2014 Sep 18;513(7518):382-7 - PubMed
  58. Gut. 2020 Dec;69(12):2165-2179 - PubMed
  59. Cell Stem Cell. 2016 Jun 2;18(6):827-838 - PubMed
  60. Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13308-11 - PubMed
  61. J Exp Clin Cancer Res. 2018 Jan 5;37(1):2 - PubMed

Publication Types

Grant support