Display options
Share it on

Cell. 2021 Jul 22;184(15):3981-3997.e22. doi: 10.1016/j.cell.2021.05.028. Epub 2021 Jun 21.

A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells.

Cell

Harikesh S Wong, Kyemyung Park, Anita Gola, Antonio P Baptista, Christine H Miller, Deeksha Deep, Meng Lou, Lisa F Boyd, Alexander Y Rudensky, Peter A Savage, Grégoire Altan-Bonnet, John S Tsang, Ronald N Germain

Affiliations

  1. Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA. Electronic address: [email protected].
  2. Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA; Biophysics program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
  3. Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
  4. Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium.
  5. Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
  6. Howard Hughes Medical Institute, Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  7. Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  8. Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  9. Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
  10. Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA. Electronic address: [email protected].

PMID: 34157301 PMCID: PMC8390950 DOI: 10.1016/j.cell.2021.05.028

Abstract

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.

Published by Elsevier Inc.

Keywords: CTLA-4; IL-2; IL-2Rα; apoptosis; autoimmunity; computational modeling; feedback control; immune homeostasis; quantitative tissue imaging; regulatory T cells

Conflict of interest statement

Declaration of interests A.Y.R. is a co-founder of Sonoma Biotherapeutics; he is an SAB member and reports personal fees from Sonoma Biotherapeutics, RAPT Therapeutics, and Vedanta Biosciences and hol

References

  1. Anal Chim Acta. 2018 Feb 13;1000:205-213 - PubMed
  2. Nat Rev Immunol. 2014 Jun;14(6):377-91 - PubMed
  3. PLoS Comput Biol. 2015 Apr 29;11(4):e1004206 - PubMed
  4. J Immunol. 2005 Aug 1;175(3):1575-85 - PubMed
  5. Nature. 1986 May 15-21;321(6067):219-26 - PubMed
  6. Cell. 2013 May 9;153(4):785-96 - PubMed
  7. Immunity. 2013 Nov 14;39(5):846-57 - PubMed
  8. Cold Spring Harb Perspect Med. 2018 Dec 3;8(12): - PubMed
  9. Immunity. 2019 May 21;50(5):1188-1201.e6 - PubMed
  10. Nature. 2007 Nov 1;450(7166):56-62 - PubMed
  11. Nat Immunol. 2003 Apr;4(4):337-42 - PubMed
  12. Biophys J. 2017 Mar 14;112(5):997-1009 - PubMed
  13. Science. 2003 Feb 14;299(5609):1057-61 - PubMed
  14. Nat Genet. 2001 Jan;27(1):20-1 - PubMed
  15. J Exp Med. 2014 Jan 13;211(1):121-36 - PubMed
  16. J Immunol. 1981 Dec;127(6):2488-95 - PubMed
  17. Nat Med. 2014 Dec;20(12):1410-1416 - PubMed
  18. J Exp Med. 1995 Aug 1;182(2):389-400 - PubMed
  19. J Exp Med. 1993 Aug 1;178(2):427-38 - PubMed
  20. Mol Syst Biol. 2010 Nov 30;6:437 - PubMed
  21. Curr Opin Immunol. 2020 Dec;67:18-26 - PubMed
  22. Mol Cell. 2002 Dec;10(6):1331-44 - PubMed
  23. Nat Immunol. 2019 Feb;20(2):218-231 - PubMed
  24. J Immunol. 2006 Jul 1;177(1):192-200 - PubMed
  25. Nat Rev Genet. 2007 Jun;8(6):450-61 - PubMed
  26. J Clin Invest. 2015 Jun;125(6):2234-41 - PubMed
  27. Cell. 2010 Oct 1;143(1):134-44 - PubMed
  28. Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):998-1003 - PubMed
  29. Eur J Immunol. 2005 Apr;35(4):1086-96 - PubMed
  30. R J. 2016 Aug;8(1):289-317 - PubMed
  31. J Exp Med. 2019 Jun 3;216(6):1311-1327 - PubMed
  32. Nat Immunol. 2006 Jan;7(1):83-92 - PubMed
  33. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18036-41 - PubMed
  34. J Exp Med. 2019 May 6;216(5):1170-1181 - PubMed
  35. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E888-97 - PubMed
  36. Nat Immunol. 2003 Apr;4(4):330-6 - PubMed
  37. J Exp Med. 2002 Jan 7;195(1):99-111 - PubMed
  38. Immunity. 2012 Aug 24;37(2):364-76 - PubMed
  39. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11833-8 - PubMed
  40. J Exp Med. 1987 Oct 1;166(4):1055-69 - PubMed
  41. Nat Immunol. 2016 Feb;17(2):187-95 - PubMed
  42. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  43. PLoS Biol. 2010 Sep 14;8(9): - PubMed
  44. Nature. 1983 Jul 7-13;304(5921):30-4 - PubMed
  45. J Exp Med. 2005 Mar 7;201(5):723-35 - PubMed
  46. Nat Genet. 2001 Jan;27(1):68-73 - PubMed
  47. Cell Syst. 2016 Feb 24;2(2):62-7 - PubMed
  48. J Immunol. 1998 Feb 1;160(3):1212-8 - PubMed
  49. PLoS Biol. 2005 Nov;3(11):e356 - PubMed
  50. Science. 2010 Sep 24;329(5999):1667-71 - PubMed
  51. J Exp Med. 2013 Nov 18;210(12):2707-20 - PubMed
  52. J Immunol. 2014 Dec 15;193(12):5894-903 - PubMed
  53. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3058-63 - PubMed
  54. J Immunol. 2012 May 1;188(9):4135-40 - PubMed
  55. J Immunol. 1994 Apr 15;152(8):3946-57 - PubMed
  56. Elife. 2014 Apr 09;3:e01944 - PubMed
  57. Nat Immunol. 2014 Nov;15(11):1070-8 - PubMed
  58. Immunity. 2002 Aug;17(2):201-10 - PubMed
  59. Science. 2014 Sep 26;345(6204):1623-1627 - PubMed
  60. Eur J Immunol. 2001 Jul;31(7):2094-103 - PubMed
  61. Nat Immunol. 2007 Feb;8(2):191-7 - PubMed
  62. J Clin Invest. 2013 Feb;123(2):580-93 - PubMed
  63. Immunity. 2014 Nov 20;41(5):722-36 - PubMed
  64. Immunity. 2009 May;30(5):636-45 - PubMed
  65. Science. 2006 Mar 31;311(5769):1924-7 - PubMed
  66. J Biol Chem. 1986 Nov 25;261(33):15450-4 - PubMed
  67. Nat Med. 2017 May 5;23(5):540-547 - PubMed
  68. Nature. 2017 Sep 7;549(7670):111-115 - PubMed
  69. Curr Opin Immunol. 2011 Oct;23(5):598-604 - PubMed
  70. Cell Rep. 2015 May 26;11(8):1208-19 - PubMed
  71. Nat Protoc. 2015 Mar;10(3):517-27 - PubMed
  72. Nat Immunol. 2017 Jan;18(1):96-103 - PubMed
  73. Immunity. 2008 May;28(5):687-97 - PubMed
  74. J Mol Biol. 2001 Dec 14;314(5):993-1006 - PubMed
  75. J Immunol. 2015 Dec 1;195(11):5432-9 - PubMed
  76. Cold Spring Harb Symp Quant Biol. 1969;34:603-8 - PubMed
  77. Nat Immunol. 2007 Dec;8(12):1353-62 - PubMed
  78. Sci Signal. 2013 Mar 12;6(266):ra17 - PubMed
  79. Nature. 2015 Feb 19;518(7539):337-43 - PubMed
  80. Front Immunol. 2012 Sep 05;3:268 - PubMed
  81. Elife. 2016 Jul 04;5: - PubMed
  82. Eur J Immunol. 1996 Feb;26(2):294-9 - PubMed
  83. Cold Spring Harb Perspect Biol. 2012 Jun 01;4(6): - PubMed
  84. Nature. 2000 Jun 1;405(6786):590-3 - PubMed
  85. Nature. 2015 Dec 10;528(7581):225-30 - PubMed
  86. Science. 2006 Apr 7;312(5770):114-6 - PubMed
  87. Immunity. 2015 May 19;42(5):815-25 - PubMed
  88. Biophys J. 2001 Oct;81(4):1854-67 - PubMed
  89. Nature. 2004 Jan 22;427(6972):355-60 - PubMed
  90. J Exp Med. 2002 Oct 21;196(8):1079-90 - PubMed
  91. Immunity. 2017 Apr 18;46(4):609-620 - PubMed
  92. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7321-E7330 - PubMed
  93. Nat Immunol. 2016 Nov;17(11):1322-1333 - PubMed
  94. J Exp Med. 2006 Mar 20;203(3):505-11 - PubMed
  95. J Exp Med. 2002 Sep 16;196(6):851-7 - PubMed
  96. Biophys J. 2011 Nov 16;101(10):2360-9 - PubMed
  97. Science. 2014 Nov 28;346(6213):1123-7 - PubMed
  98. Nat Immunol. 2005 Nov;6(11):1142-51 - PubMed
  99. Nature. 1995 Jul 6;376(6535):37-43 - PubMed
  100. Immunity. 2014 Aug 21;41(2):181-90 - PubMed
  101. J Exp Med. 1997 Feb 3;185(3):393-403 - PubMed
  102. Science. 2012 Oct 26;338(6106):532-6 - PubMed
  103. Science. 2011 Apr 29;332(6029):600-3 - PubMed

Publication Types

Grant support