Display options
Share it on

Mol Biol Evol. 2021 Sep 27;38(10):4419-4434. doi: 10.1093/molbev/msab183.

The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae).

Molecular biology and evolution

Makenzie E Mabry, Sarah D Turner-Hissong, Evan Y Gallagher, Alex C McAlvay, Hong An, Patrick P Edger, Jonathan D Moore, David A C Pink, Graham R Teakle, Chris J Stevens, Guy Barker, Joanne Labate, Dorian Q Fuller, Robin G Allaby, Timothy Beissinger, Jared E Decker, Michael A Gore, J Chris Pires

Affiliations

  1. Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
  2. Department of Evolution and Ecology, University of California Davis, Davis, CA, USA.
  3. Institute of Economic Botany, The New York Botanical Garden, Bronx, NY, USA.
  4. Department of Horticulture, Michigan State University, East Lansing, MI, USA.
  5. Systems Biology Centre, University of Warwick, Coventry, United Kingdom.
  6. Agriculture and Environment Department, Harper Adams University, Newport, United Kingdom.
  7. School of Life Science, University of Warwick, Coventry, United Kingdom.
  8. School of Archaeology and Museology, Peking University, Beijing, China.
  9. Institute of Archaeology, University College London, London, United Kingdom.
  10. USDA, ARS Plant Genetic Resources Unit, Cornell AgriTech, Geneva, NY, USA.
  11. School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, China.
  12. Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.
  13. Division of Plant Breeding Methodology, Department of Crop Sciences, University of Goettingen, Goettingen, Germany.
  14. Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
  15. Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.

PMID: 34157722 PMCID: PMC8476135 DOI: 10.1093/molbev/msab183

Abstract

Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Keywords: Mediterranean; cabbage; crop wild relatives; domestication; ecological niche; origin

References

  1. Ecol Appl. 2009 Jan;19(1):181-97 - PubMed
  2. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6147-52 - PubMed
  3. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  4. Genome Biol. 2014;15(12):550 - PubMed
  5. Ecol Evol. 2019 Aug 20;9(18):10365-10376 - PubMed
  6. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33351-33357 - PubMed
  7. Ecol Evol. 2020 Sep 24;10(20):11810-11825 - PubMed
  8. Plant Genome. 2015 Nov;8(3):eplantgenome2015.04.0023 - PubMed
  9. F1000Res. 2015 Dec 30;4:1521 - PubMed
  10. Trends Ecol Evol. 2019 Dec;34(12):1137-1151 - PubMed
  11. Mol Ecol. 2007 Dec;16(23):4972-83 - PubMed
  12. Nat Methods. 2017 Apr;14(4):417-419 - PubMed
  13. Mol Plant. 2019 May 6;12(5):615-631 - PubMed
  14. Biometrics. 1988 Sep;44(3):837-45 - PubMed
  15. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  16. J Theor Biol. 2016 Oct 21;407:362-370 - PubMed
  17. Genome Biol. 2014 Jun 10;15(6):R77 - PubMed
  18. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  19. Curr Opin Plant Biol. 2020 Apr;54:93-100 - PubMed
  20. Sci Data. 2018 Nov 13;5:180254 - PubMed
  21. Nature. 2009 Sep 24;461(7263):489-94 - PubMed
  22. J Exp Bot. 2010 Feb;61(4):935-44 - PubMed
  23. Hortic Res. 2018 Jul 1;5:38 - PubMed
  24. Genetics. 2018 Oct;210(2):719-731 - PubMed
  25. BMC Genomics. 2020 Jan 14;21(1):48 - PubMed
  26. Nat Methods. 2013 Dec;10(12):1185-91 - PubMed
  27. New Phytol. 2012 Oct;196(1):29-48 - PubMed
  28. Genome. 1997 Jun;40(3):302-8 - PubMed
  29. Bioinformatics. 2011 Aug 1;27(15):2156-8 - PubMed
  30. PLoS One. 2011;6(6):e20232 - PubMed
  31. BMC Genomics. 2014 Feb 26;15:162 - PubMed
  32. PLoS Genet. 2012;8(11):e1002967 - PubMed
  33. Nat Biotechnol. 2018 Oct 01;: - PubMed
  34. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  35. Theor Appl Genet. 2003 Apr;106(6):1122-8 - PubMed
  36. Mol Biol Evol. 2018 Feb 1;35(2):518-522 - PubMed
  37. Mol Biol Evol. 2015 Jan;32(1):268-74 - PubMed
  38. Theor Appl Genet. 2007 Feb;114(4):609-18 - PubMed
  39. Nat Genet. 2016 Oct;48(10):1218-24 - PubMed
  40. Stat Appl Genet Mol Biol. 2005;4:Article17 - PubMed
  41. Trends Genet. 2021 Apr;37(4):302-305 - PubMed
  42. Genome Res. 2017 Jun;27(6):1029-1038 - PubMed
  43. Theor Appl Genet. 1988 Oct;76(4):593-600 - PubMed
  44. Genetics. 2014 Jun;197(2):573-89 - PubMed
  45. BMC Bioinformatics. 2014 Nov 25;15:356 - PubMed
  46. Am J Hum Genet. 2007 Sep;81(3):559-75 - PubMed
  47. BMC Bioinformatics. 2008 Dec 29;9:559 - PubMed
  48. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 - PubMed
  49. Theor Appl Genet. 1990 Apr;79(4):497-506 - PubMed
  50. Nucleic Acids Res. 2021 Jan 8;49(D1):D394-D403 - PubMed

Publication Types

Grant support