Display options
Share it on

Front Cell Dev Biol. 2021 Jun 15;9:662059. doi: 10.3389/fcell.2021.662059. eCollection 2021.

Conserved Mechanisms in the Formation of the Airways and Alveoli of the Lung.

Frontiers in cell and developmental biology

David Warburton

Affiliations

  1. The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States.

PMID: 34211971 PMCID: PMC8239290 DOI: 10.3389/fcell.2021.662059

Abstract

Branching is an intrinsic property of respiratory epithelium that can be induced and modified by signals emerging from the mesenchyme. However, during stereotypic branching morphogenesis of the airway, the relatively thick upper respiratory epithelium extrudes through a mesenchymal orifice to form a new branch, whereas during alveologenesis the relatively thin lower respiratory epithelium extrudes to form sacs or bubbles. Thus, both branching morphogenesis of the upper airway and alveolarization in the lower airway seem to rely on the same fundamental physical process: epithelial extrusion through an orifice. Here I propose that it is the orientation and relative stiffness of the orifice boundary that determines the stereotypy of upper airway branching as well as the orientation of individual alveolar components of the gas exchange surface. The previously accepted dogma of the process of alveologenesis, largely based on 2D microscopy, is that alveoli arise by erection of finger-like interalveolar septae to form septal clefts that subdivide pre-existing saccules, a process for which the contractile properties of specialized alveolar myofibroblasts are necessary. Here I suggest that airway tip splitting and stereotypical side domain branching are actually conserved processes, but modified somewhat by evolution to achieve both airway tip splitting and side branching of the upper airway epithelium, as well as alveologenesis. Viewed in 3D it is clear that alveolar "septal tips" are in fact ring or purse string structures containing elastin and collagen that only appear as finger like projections in cross section. Therefore, I propose that airway branch orifices as well as alveolar mouth rings serve to delineate and stabilize the budding of both airway and alveolar epithelium, from the tips and sides of upper airways as well as from the sides and tips of alveolar ducts. Certainly, in the case of alveoli arising laterally and with radial symmetry from the sides of alveolar ducts, the mouth of each alveolus remains within the plane of the side of the ductal lumen. This suggests that the thin epithelium lining these lateral alveolar duct buds may extrude or "pop out" from the duct lumen through rings rather like soap or gum bubbles, whereas the thicker upper airway epithelium extrudes through a ring like toothpaste from a tube to form a new branch.

Copyright © 2021 Warburton.

Keywords: airway; alveolus; branching; conserved; morphogenesis

Conflict of interest statement

DW serve on advisory boards regarding pediatric interstitial lung disease at Boehringer Ingelheim.

References

  1. Neonatology. 2017;111(4):398-401 - PubMed
  2. Biol Neonate. 2006;89(4):313-22 - PubMed
  3. Mech Dev. 2015 Nov;138 Pt 3:356-63 - PubMed
  4. J Theor Biol. 2015 Oct 7;382:378-85 - PubMed
  5. PLoS One. 2013 Nov 25;8(11):e80294 - PubMed
  6. Dev Biol. 2005 Jun 15;282(2):422-31 - PubMed
  7. Dev Biol. 2005 Jan 15;277(2):316-31 - PubMed
  8. Nature. 2008 Jun 5;453(7196):733-5 - PubMed
  9. Dev Biol. 1997 Jun 15;186(2):224-36 - PubMed
  10. Mech Dev. 2001 Apr;102(1-2):81-94 - PubMed
  11. Dev Cell. 2020 Apr 6;53(1):73-85.e5 - PubMed
  12. Development. 1997 Dec;124(23):4867-78 - PubMed
  13. Mech Dev. 2000 Mar 15;92(1):55-81 - PubMed
  14. Development. 2011 Jun;138(11):2359-68 - PubMed
  15. Dev Dyn. 1998 Aug;212(4):482-94 - PubMed
  16. Am J Physiol Lung Cell Mol Physiol. 2017 Nov 1;313(5):L733-L740 - PubMed
  17. Nature. 2008 Jun 5;453(7196):745-50 - PubMed
  18. Biol Open. 2017 Oct 15;6(10):1458-1471 - PubMed
  19. Science. 2011 Jul 15;333(6040):342-345 - PubMed
  20. Am J Respir Cell Mol Biol. 2020 Feb;62(2):256-266 - PubMed
  21. Dev Biol. 2006 Feb 1;290(1):177-88 - PubMed
  22. J Clin Invest. 2020 Jun 1;130(6):2859-2871 - PubMed
  23. Cell Tissue Res. 2017 Mar;367(3):427-444 - PubMed
  24. Am J Physiol Lung Cell Mol Physiol. 2010 Oct;299(4):L453-4 - PubMed
  25. Am J Physiol Lung Cell Mol Physiol. 2002 Oct;283(4):L700-6 - PubMed
  26. Am J Physiol Lung Cell Mol Physiol. 2018 Jan 1;314(1):L144-L149 - PubMed
  27. Am J Physiol Lung Cell Mol Physiol. 2016 Dec 1;311(6):L1082-L1089 - PubMed
  28. Nat Commun. 2019 Mar 12;10(1):1178 - PubMed
  29. Am J Physiol Lung Cell Mol Physiol. 2005 Apr;288(4):L683-91 - PubMed
  30. Curr Biol. 1999 Feb 25;9(4):219-22 - PubMed
  31. Sci Rep. 2016 Feb 25;6:21975 - PubMed
  32. Nat Genet. 1999 Jan;21(1):138-41 - PubMed
  33. Dev Cell. 2010 Jan 19;18(1):8-23 - PubMed
  34. Dev Dyn. 2002 Jan;223(1):155-62 - PubMed
  35. Histochem Cell Biol. 2018 Dec;150(6):677-691 - PubMed
  36. Respir Res. 2003;4:5 - PubMed
  37. Mech Dev. 2008 Mar-Apr;125(3-4):314-24 - PubMed
  38. Dev Biol. 1995 Dec;172(2):694-8 - PubMed
  39. Curr Top Dev Biol. 2010;90:73-158 - PubMed
  40. J Physiol. 2014 Jan 15;592(2):313-24 - PubMed
  41. Am J Physiol Lung Cell Mol Physiol. 2017 Dec 1;313(6):L1101-L1153 - PubMed
  42. Genes Dev. 1998 Oct 15;12(20):3156-61 - PubMed
  43. PLoS One. 2015 Jul 06;10(7):e0132015 - PubMed
  44. Sci Rep. 2018 May 29;8(1):8334 - PubMed
  45. Dev Biol. 2016 Jan 15;409(2):429-41 - PubMed
  46. BMC Biol. 2014 Nov 11;12:92 - PubMed
  47. Am J Respir Cell Mol Biol. 2020 Feb;62(2):141-142 - PubMed

Publication Types