Display options
Share it on

Am J Med Genet A. 2021 Oct;185(10):3118-3121. doi: 10.1002/ajmg.a.62384. Epub 2021 Jun 22.

Expansion of the clinical phenotype of GALE deficiency.

American journal of medical genetics. Part A

Rebecca Markovitz, Nichole Owen, Lisa Forbes Satter, Susan Kirk, Donald H Mahoney, Alison A Bertuch, Fernando Scaglia

Affiliations

  1. Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
  2. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
  3. Baylor Genetics, Houston, Texas, USA.
  4. Department of Pediatrics, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, Texas, USA.
  5. William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas, USA.
  6. Texas Children's Hospital, Houston, Texas, USA.
  7. Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA.
  8. Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas, USA.
  9. Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR.

PMID: 34159722 DOI: 10.1002/ajmg.a.62384

Abstract

Congenital disorders of glycosylation are a group of rare monogenic inborn errors of metabolism caused by defective glycoprotein and glycolipid glycan synthesis and attachment. Here, we present a patient with galactose epimerase deficiency, also known as GALE deficiency, accompanied by pancytopenia and immune dysregulation. She was first identified by an abnormal newborn screen for galactosemia with subsequent genetic evaluation due to pancytopenia and immune dysregulation. The evaluation ultimately revealed that her known diagnosis of GALE deficiency was the cause of her hematologic and immune abnormalities. These findings further expand the clinical spectrum of disease of congenital disorders of glycosylation.

© 2021 Wiley Periodicals LLC.

Keywords: B-cell deficiency; congenital disorders of glycosylation; dysmegakaryopoiesis; glycosylation; immune dysfunction; thrombocytopenia

References

  1. Chang, I. J., He, M., & Lam, C. T. (2018). Congenital disorders of glycosylation. Annals of Translational Medicine, 6(24), 477. https://doi.org/10.21037/atm.2018.10.45 - PubMed
  2. Chhay, J. S., Vargas, C. A., McCorvie, T. J., Fridovich-Keil, J. L., & Timson, D. J. (2008). Analysis of UDP-galactose 4'-epimerase mutations associated with the intermediate form of type III galactosaemia. Journal of Inherited Metabolic Disease, 31(1), 108-116. https://doi.org/10.1007/s10545-007-0790-9 - PubMed
  3. Hsu, A. P., McReynolds, L. J., & Holland, S. M. (2015). GATA2 deficiency. Current Opinion in Allergy and Clinical Immunology, 15(1), 104-109. https://doi.org/10.1097/ACI.0000000000000126 - PubMed
  4. Jaeken, J., van Eijk, H. G., van der Heul, C., Corbeel, L., Eeckels, R., & Eggermont, E. (1984). Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clinica Chimica Acta, 144(2-3), 245-247. https://doi.org/10.1016/0009-8981(84)90059-7 - PubMed
  5. Lyons, J. J., Milner, J. D., & Rosenzweig, S. D. (2015). Glycans instructing immunity: The emerging role of altered glycosylation in clinical immunology. Frontiers in Pediatrics, 3, 54. https://doi.org/10.3389/fped.2015.00054 - PubMed
  6. McReynolds, L. J., Calvo, K. R., & Holland, S. M. (2018). Germline GATA2 mutation and bone marrow failure. Hematology/Oncology Clinics of North America, 32(4), 713-728. https://doi.org/10.1016/j.hoc.2018.04.004 - PubMed
  7. Openo, K. K., Schulz, J. M., Vargas, C. A., Orton, C. S., Epstein, M. P., Schnur, R. E., Scaglia, F., Berry, G. T., Gottesman, G. S., Ficicioglu, C., Slonim, A. E., Schroer, R. J., Yu, C., Rangel, V. E., Keenan, J., Lamance, K., & Fridovich-Keil, J. L. (2006). Epimerase-deficiency galactosemia is not a binary condition. American Journal of Human Genetics, 78(1), 89-102. https://doi.org/10.1086/498985 - PubMed
  8. Pyhtila, B. M., Shaw, K. A., Neumann, S. E., & Fridovich-Keil, J. L. (2015). Newborn screening for galactosemia in the United States: Looking back, looking around, and looking ahead. JIMD Reports, 15, 79-93. https://doi.org/10.1007/8904_2014_302 - PubMed
  9. Rosoff, P. M. (1995). Myelodysplasia and deficiency of uridine diphosphate-galactose 4-epimerase. The Journal of Pediatrics, 127(4), 605-608. https://doi.org/10.1016/s0022-3476(95)70124-9 - PubMed
  10. Seo, A., Gulsuner, S., Pierce, S., Ben-Harosh, M., Shalev, H., Walsh, T., Krasnov, T., Dgany, O., Doulatov, S., Tamary, H., Shimamura, A., & King, M.-C. (2019). Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Human Molecular Genetics, 28(1), 133-142. https://doi.org/10.1093/hmg/ddy334 - PubMed
  11. Tamary, H., Yaniv, I., Stein, J., Dgany, O., Shalev, Z., Shechter, T., Resnitzky, P., Shaft, D., Zoldan, M., Kornreich, L., Levy, R., Cohen, A., Moser, R. A., Kapelushnik, J., & Shalev, H. (2003). A clinical and molecular study of a Bedouin family with dysmegakaryopoiesis, mild anemia, and neutropenia cured by bone marrow transplantation. European Journal of Haematology, 71(3), 196-203. https://doi.org/10.1034/j.1600-0609.2003.00126.x - PubMed
  12. Tong, F., Yang, R., Hong, F., Qian, G., Jiang, P., & Gao, R. (2016). A first case report of UDP-galactose-4′-epimerase deficiency in China: Genotype and phenotype. Journal of Pediatric Endocrinology & Metabolism, 29(3), 379-383. https://doi.org/10.1515/jpem-2014-0462 - PubMed

Publication Types