Display options
Share it on

Mol Psychiatry. 2021 Jul 09; doi: 10.1038/s41380-021-01214-x. Epub 2021 Jul 09.

Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition.

Molecular psychiatry

Jana Lubec, Predrag Kalaba, Ahmed M Hussein, Daniel Daba Feyissa, Mohamed H Kotob, Rasha R Mahmmoud, Oliver Wieder, Arthur Garon, Claudia Sagheddu, Marija Ilic, Vladimir Dragačević, Anita Cybulska-Klosowicz, Martin Zehl, Judith Wackerlig, Simone B Sartori, Karl Ebner, Shima Kouhnavardi, Alexander Roller, Natalie Gajic, Marco Pistis, Nicolas Singewald, Johann Jakob Leban, Volker Korz, Jovana Malikovic, Roberto Plasenzotti, Harald H Sitte, Francisco J Monje, Thierry Langer, Ernst Urban, Christian Pifl, Gert Lubec

Affiliations

  1. Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria.
  2. Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
  3. Department of Zoology, Al-Azhar University, Assiut, Egypt.
  4. Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
  5. Department of Pediatrics, Faculty of Medicine, Assuit University, Assuit, Egypt.
  6. Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy.
  7. Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
  8. Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
  9. Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
  10. Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
  11. X-ray Structure Analysis Centre, Faculty of Chemistry, University of Vienna, Vienna, Austria.
  12. Neuroscience Institute, National Research Council of Italy (CNR), Section of Cagliari, Cagliari, Italy.
  13. Division of Biomedical Research, Medical University of Vienna, Vienna, Austria.
  14. Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria.
  15. Center for Brain Research, Medical University of Vienna, Vienna, Austria.
  16. Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria. [email protected].

PMID: 34244620 DOI: 10.1038/s41380-021-01214-x

Abstract

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

References

  1. Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept. J Am Geriatrics Soc. 2007;55:780–91. - PubMed
  2. Chiu CJ, Cheng YY. Utility of geriatric syndrome indicators for predicting subsequent health care utilization in older adults in Taiwan. Int J Environ Res Publ Health. 2019;16:456. - PubMed
  3. Murman DL. The impact of age on cognition. Semin Hearing. 2015;36:111–21. - PubMed
  4. Kaasinen V, Rinne JO. Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev. 2002;26:785–93. - PubMed
  5. Dillman AA, Majounie E, Ding J, Gibbs JR, Hernandez D, Arepalli S, et al. Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep. 2017;7:16890. - PubMed
  6. Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2017;57:36–46. - PubMed
  7. Hamilton TJ, Wheatley BM, Sinclair DB, Bachmann M, Larkum ME, Colmers WF. Dopamine modulates synaptic plasticity in dendrites of rat and human dentate granule cells. Proc Natl Acad Sci USA. 2010;107:18185–90. - PubMed
  8. Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys Q, Duzel E, et al. Dopamine restores reward prediction errors in old age. Nat Neurosci. 2013;16:648–53. - PubMed
  9. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Receptor Signal Transduct Res. 2004;24:165–205. - PubMed
  10. Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci. 2011;31:7349–56. - PubMed
  11. Nikiforuk A, Kalaba P, Ilic M, Korz V, Dragacevic V, Wackerlig J, et al. A novel dopamine transporter inhibitor CE-123 improves cognitive flexibility and maintains impulsivity in healthy male rats. Front Behav Neurosci. 2017;11:222. - PubMed
  12. Gerrard P, Malcolm R. Mechanisms of modafinil: a review of current research. Neuropsychiatr Dis Treat. 2007;3:349–64. - PubMed
  13. Krushkal J, Xiong M, Ferrell R, Sing CF, Turner ST, Boerwinkle E. Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Hum Mol Genet. 1998;7:1379–83. - PubMed
  14. Bisagno V, Gonzalez B, Urbano FJ. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacol Res. 2016;109:108–18. - PubMed
  15. Kalaba P, Aher NY, Ilic M, Dragacevic V, Wieder M, Miklosi AG, et al. Heterocyclic analogues of modafinil as novel, atypical dopamine transporter inhibitors. J Med Chem. 2017;60:9330–48. - PubMed
  16. Kalaba P, Ilic M, Aher NY, Dragacevic V, Wieder M, Zehl M, et al. Structure-activity relationships of novel thiazole-based modafinil analogues acting at monoamine transporters. J Med Chem. 2020;63:391–417. - PubMed
  17. Sagheddu C, Pintori N, Kalaba P, Dragacevic V, Piras G, Lubec J, et al. Neurophysiological and neurochemical effects of the putative cognitive enhancer (S)-CE-123 on mesocorticolimbic dopamine system. Biomolecules. 2020;10:779. - PubMed
  18. Underhill SM, Hullihen PD, Chen J, Fenollar-Ferrer C, Rizzo MA, Ingram SL, et al. Amphetamines signal through intracellular TAAR1 receptors coupled to Galpha13 and GalphaS in discrete subcellular domains. Mol Psychiatry. 2021;26:1208–23. - PubMed
  19. Harraz MM, Malla AP, Semenza ER, Shishikura M, Hwang Y, Kang IG, et al. Cocaine receptor identified as BASP1. https://www.biorxiv.org/content/10.1101/2020.11.23.392787v1 . 2020. - PubMed
  20. Scheller KJ, Williams SJ, Lawrence AJ, Jarrott B, Djouma E. An improved method to prepare an injectable microemulsion of the galanin-receptor 3 selective antagonist, SNAP 37889, using Kolliphor((R)) HS 15. MethodsX. 2014;1:212–216. - PubMed
  21. Camats-Perna J, Kalaba P, Ebner K, Sartori SB, Vuyyuru H, Aher NY, et al. Differential effects of novel dopamine reuptake inhibitors on interference with long-term social memory in mice. Front Behav Neurosci. 2019;13:63. - PubMed
  22. Kahn I, Shohamy D. Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus. 2013;23:187–92. - PubMed
  23. Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–34. - PubMed
  24. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci USA. 2016;113:14835–40. - PubMed
  25. Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016;537:357–62. - PubMed
  26. Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76:33–50. - PubMed
  27. Lubec J, Smidak R, Malikovic J, Feyissa DD, Korz V, Hoger H, et al. Dentate gyrus peroxiredoxin 6 levels discriminate aged unimpaired from impaired rats in a spatial memory task. Front Aging Neurosci. 2019;11:198. - PubMed
  28. Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, et al. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Investig. 2007;117:4022–33. - PubMed
  29. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41. - PubMed
  30. Luscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron. 2011;69:650–63. - PubMed
  31. Creed MC, Luscher C. Drug-evoked synaptic plasticity: beyond metaplasticity. Curr Opin Neurobiol. 2013;23:553–558. - PubMed
  32. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA. 1998;95:4029–34. - PubMed
  33. Ferreras S, Fernandez G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, et al. Cdk5 is essential for amphetamine to increase dendritic spine density in hippocampal pyramidal neurons. Front Cell Neurosci. 2017;11:372. - PubMed
  34. Ka M, Kook YH, Liao K, Buch S, Kim WY. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons. Cell Death Dis. 2016;7:e2414. - PubMed
  35. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013;77:867–72. - PubMed
  36. Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience. 2013;251:21–32. - PubMed
  37. Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS. Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. J Neurosci Methods. 2007;162:237–43. - PubMed
  38. Bahar AS, Shirvalkar PR, Shapiro ML. Memory-guided learning: CA1 and CA3 neuronal ensembles differentially encode the commonalities and differences between situations. J Neurosci. 2011;31:12270–81. - PubMed
  39. Rubin RD, Watson PD, Duff MC, Cohen NJ. The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci. 2014;8:742. - PubMed
  40. Mahmmoud RR, Sase S, Aher YD, Sase A, Groger M, Mokhtar M, et al. Spatial and working memory is linked to spine density and mushroom spines. PLoS ONE. 2015;10:e0139739. - PubMed
  41. Peters A, Kaiserman-Abramof IR. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat. 1970;127:321–55. - PubMed
  42. Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol. 2007;17:381–386. - PubMed
  43. Harris KM, Jensen FE, Tsao B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci. 1992;12:2685–705. - PubMed
  44. Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 2000;20:4320–4324. - PubMed
  45. van der Staay FJ, van Nies J, Raaijmakers W. The effects of aging in rats on working and reference memory performance in a spatial holeboard discrimination task. Behav neural Biol. 1990;53:356–70. - PubMed
  46. Barrash J. Age‐related decline in route learning ability. Developmental Neuropsychol. 1994;10:189–201. - PubMed
  47. Backman L, Lindenberger U, Li SC, Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev. 2010;34:670–7. - PubMed
  48. Rosenberg PB, Lanctot KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74:810–6. - PubMed
  49. Auriel E, Hausdorff JM, Giladi N. Methylphenidate for the treatment of Parkinson disease and other neurological disorders. Clin Neuropharmacol. 2009;32:75–81. - PubMed
  50. Sassi KLM, Rocha NP, Colpo GD, John V, Teixeira AL. Amphetamine Use in the Elderly: A Systematic Review of the Literature. Curr Neuropharmacol. 2020;18:126–35. - PubMed
  51. Reece AS, Norman A, Hulse GK. Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age. Heart Asia. 2017;9:30–8. - PubMed
  52. Schmitt KC, Rothman RB, Reith ME. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther. 2013;346:2–10. - PubMed
  53. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008;33:1477–502. - PubMed
  54. Keighron JD, Quarterman JC, Cao J, DeMarco EM, Coggiano MA, Gleaves A, et al. Effects of (R)-modafinil and modafinil analogues on dopamine dynamics assessed by voltammetry and microdialysis in the mouse nucleus accumbens shell. ACS Chem Neurosci. 2019;10:2012–21. - PubMed
  55. Desai RI, Kopajtic TA, Koffarnus M, Newman AH, Katz JL. Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine. J Neurosci. 2005;25:1889–93. - PubMed
  56. Tanda G, Newman AH, Ebbs AL, Tronci V, Green JL, Tallarida RJ, et al. Combinations of cocaine with other dopamine uptake inhibitors: assessment of additivity. J Pharmacol Exp Ther. 2009;330:802–9. - PubMed
  57. Rush CR, Kelly TH, Hays LR, Baker RW, Wooten AF. Acute behavioral and physiological effects of modafinil in drug abusers. Behav Pharmacol. 2002;13:105–15. - PubMed
  58. Kampman KM, Lynch KG, Pettinati HM, Spratt K, Wierzbicki MR, Dackis C, et al. A double blind, placebo controlled trial of modafinil for the treatment of cocaine dependence without co-morbid alcohol dependence. Drug Alcohol Depend. 2015;155:105–10. - PubMed
  59. Zhang HY, Bi GH, Yang HJ, He Y, Xue G, Cao J, et al. The novel modafinil analog, JJC8-016, as a potential cocaine abuse pharmacotherapeutic. Neuropsychopharmacology. 2017;42:1871–83. - PubMed
  60. Anderson AL, Li SH, Biswas K, McSherry F, Holmes T, Iturriaga E, et al. Modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2012;120:135–41. - PubMed
  61. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63. - PubMed
  62. Rotolo RA, Kalaba P, Dragacevic V, Presby RE, Neri J, Robertson E, et al. Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology. 2020;237:3459–70. - PubMed
  63. Rotolo RA, Dragacevic V, Kalaba P, Urban E, Zehl M, Roller A, et al. The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding. Front Pharmacol. 2019;10:682. - PubMed
  64. Goetghebeur P, Dias R. Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat–a back translational study. Psychopharmacology. 2009;202:287–93. - PubMed
  65. Ilic M, Holy M, Jaentsch K, Liechti ME, Lubec G, Baumann MH, et al. Cell-based radiotracer binding and uptake inhibition assays: a comparison of in vitro methods to assess the potency of drugs that target monoamine transporters. Front Pharmacol. 2020;11:673. - PubMed
  66. Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric modulation of neurotransmitter transporters as a therapeutic strategy. Trends Pharmacol Sci. 2020;41:446–63. - PubMed
  67. Pifl C, Reither H, Hornykiewicz O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol. 2015;755:119–26. - PubMed
  68. Au-Young SM, Shen H, Yang CR. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse. 1999;34:245–55. - PubMed
  69. Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 1990;13:99–104. - PubMed
  70. Secci ME, Mascia P, Sagheddu C, Beggiato S, Melis M, Borelli AC, et al. Astrocytic mechanisms involving kynurenic acid control delta(9)-tetrahydrocannabinol-induced increases in glutamate release in brain reward-processing areas. Mol Neurobiol. 2019;56:3563–75. - PubMed
  71. Stojanovic T, Benes H, Awad A, Bormann D, Monje FJ. Nicotine abolishes memory-related synaptic strengthening and promotes synaptic depression in the neurogenic dentate gyrus of miR-132/212 knockout mice. Addict Biol. 2020;26:e12905. - PubMed
  72. Nguyen PV, Kandel ER. Brief theta-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn Mem. 1997;4:230–43. - PubMed
  73. Nguyen PV, Abel T, Kandel ER. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 1994;265:1104–1107. - PubMed
  74. Young JW, Powell SB, Geyer MA, Jeste DV, Risbrough VB. The mouse attentional-set-shifting task: a method for assaying successful cognitive aging? Cogn Affect Behav Neurosci. 2010;10:243–51. - PubMed
  75. Feyissa DD, Aher YD, Engidawork E, Hoger H, Lubec G, Korz V. Individual differences in male rats in a behavioral test battery: a multivariate statistical approach. Front Behav Neurosci. 2017;11:26. - PubMed
  76. Kristofova M, Aher YD, Ilic M, Radoman B, Kalaba P, Dragacevic V, et al. A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behav Brain Res. 2018;343:83–94. - PubMed

Publication Types