Display options
Share it on

J Food Biochem. 2021 Jul 09;e13863. doi: 10.1111/jfbc.13863. Epub 2021 Jul 09.

Menthol, a bioactive constituent of Mentha, attenuates motion sickness in mice model: Involvement of dopaminergic system.

Journal of food biochemistry

Uma Maheswari Deshetty, Anand Tamatam, Mahantesh Mallikarjun Patil

Affiliations

  1. Nutrition, Biochemistry & Toxicology Division, Defence Food Research Laboratory, Mysore, India.

PMID: 34245039 DOI: 10.1111/jfbc.13863

Abstract

Motion sickness (MS) occurs due to contradicting vestibular and visual inputs to the brain causing nausea and vomiting. Antidopaminergic drugs being effective in reducing MS create a path for effective therapy against MS by regulating dopamine levels. We aimed to evaluate the role of the striatum and brainstem dopamine and dopamine D2 receptor (DRD2) in MS and the efficacy of menthol (MNT) to modulate dopamine and DRD2 in vitro and in vivo for possible amelioration of MS. Evaluation of efficacy of MNT to inhibit dopamine release from PC12 cells and anti-MS efficacy in BALB/c mice model was performed. Dopamine, DRD2 expression in PC12 cells, mice striatum, and brainstem were detected using HPLC-ECD, RT-PCR, and Western blot analysis, respectively. DRD2 expression increased in calcium ionophore-treated PC12 cells compared with control cells. Pretreatment with 50 μg/ml menthol decreased dopamine and DRD2 expression. Similarly, dopamine and DRD2 levels in mice striatum and brainstem of MS group (rotation induced) increased significantly compared with control group NC (no rotation). Pretreatment with menthol at 50 mg/kg concentration (rotation induced) showed decreased dopamine and DRD2 expression, thus indicating ameliorative effect on MS. Hence, we suggest that increased striatum and brainstem dopamine and DRD2 levels might lead to MS symptoms, and menthol could be used as a potent herbal alternative medicine for MS. PRACTICAL APPLICATIONS: Antidopaminergic drugs being effective in reducing motion sickness (MS) creates a path for effective therapy against MS by regulating dopamine levels. Increased striatum and brainstem dopamine and Dopamine D2 receptor (DRD2) levels might lead to the MS symptoms induced by rotation stimulation in mice model. Menthol showed a prophylactic effect on rotation-induced MS by reducing striatal and brainstem dopamine levels, DRD2 mRNA, and protein expression. Menthol could be used as an herbal alternative to antidopaminergics to minimize the associated adverse effects.

© 2021 Wiley Periodicals LLC.

Keywords: brainstem; dopamine; dopamine D2 receptor; menthol; motion sickness; striatum

References

  1. Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry, 52, 1655-1658. https://doi.org/10.1111/j.1471-4159.1989.tb09224.x - PubMed
  2. Alburges, M. E., Narang, N., & Wamsley, J. K. (1993). A sensitive and rapid HPLC-ECD method for the simultaneous analysis of norepinephrine, dopamine, serotonin and their primary metabolites in brain tissue. Biomedical Chromatography, 7, 306-310. https://doi.org/10.1002/bmc.1130070605 - PubMed
  3. Antoni, F. A. (1993). Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Frontiers in Neuroendocrinology, 14, 76-122. https://doi.org/10.1006/frne.1993.1004 - PubMed
  4. Baldessarini, R. J. (1990). Drugs and the treatment of psychiatric disorders. Goodman and Gilman's the Pharmacological Basis of Therapeutics, 8, 383-435. - PubMed
  5. Bieger, S., Morinville, A., & Maysinger, D. (2002). Bisperoxovanadium complex promotes dopamine exocytosis in PC12 cells. Neurochemistry International, 40, 307-314. https://doi.org/10.1016/S0197-0186(01)00093-6 - PubMed
  6. Brown, R. E., Corey, S. C., & Moore, A. K. (1999). Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behavior Genetics, 29, 263-271. - PubMed
  7. Carpenter, D. O., Briggs, D. B., & Strominger, N. (1984). Peptide-induced emesis in dogs. Behavioural Brain Research, 11, 277-281. https://doi.org/10.1016/0166-4328(84)90220-1 - PubMed
  8. Chen, M. M., Xu, L. H., Chang, L., Yin, P., & Jiang, Z. L. (2018). Reduction of motion sickness through targeting histamine N-methyltransferase in the dorsal vagal complex of the brain. Journal of Pharmacology and Experimental Therapeutics, 364, 367-376. - PubMed
  9. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5, 374-381. https://doi.org/10.1038/nrendo.2009.106 - PubMed
  10. Cooper, B. R., Howard, J. L., Grant, L. D., Smith, R. D., & Breese, G. R. (1974). Alteration of avoidance and ingestive behavior after destruction of central catecholamine pathways with 6-hydroxydopamine. Pharmacology Biochemistry and Behavior, 2, 639-649. https://doi.org/10.1016/0091-3057(74)90033-1 - PubMed
  11. Deshetty, U. M., Tamatam, A., Bhattacharjee, M., Perumal, E., Natarajan, G., & Khanum, F. (2020). Ameliorative effect of hesperidin against motion sickness by modulating histamine and histamine H1 receptor expression. Neurochemical Research, 45, 371-384. https://doi.org/10.1007/s11064-019-02923-0 - PubMed
  12. Flake, Z. A., Scalley, R. D., & Bailey, A. G. (2004). Practical selection of antiemetics. American Academy of Family Physicians, 69, 1169-1174. - PubMed
  13. Garcia, A. G., Kirpekar, S. M., & Prat, J. C. (1975). A calcium ionophore stimulating the secretion of catecholamines from the cat adrenal. Journal of Physiology, 244, 253-262. https://doi.org/10.1113/jphysiol.1975.sp010795 - PubMed
  14. Greene, L. A., & Rein, G. (1977). Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Research, 129, 247-263. https://doi.org/10.1016/0006-8993(77)90005-1 - PubMed
  15. Heimes, K., Hauk, F., & Verspohl, E. J. (2011). Mode of action of peppermint oil and (-)-menthol with respect to 5-HT3 receptor subtypes: Binding studies, cation uptake by receptor channels and contraction of isolated rat ileum. Phytotherapy Research, 25, 702-708. - PubMed
  16. Henderson, B. J., Wall, T. R., Henley, B. M., Kim, C. H., Nichols, W. A., Moaddel, R., Xiao, C., & Lester, H. A. (2016). Menthol alone upregulates midbrain nAChRs, alters nAChR subtype stoichiometry, alters dopamine neuron firing frequency, and prevents nicotine reward. Journal of Neuroscience, 36, 2957-2974. https://doi.org/10.1523/JNEUROSCI.4194-15.2016 - PubMed
  17. Holland, J. F., & Pollock, R. E. (2010). Holland-Frei cancer medicine. PMPH-USA, 8, 213-218. - PubMed
  18. Horii, A., Koike, K., Uno, A., Uno, Y., & Kubo, T. (2001). Vestibular modulation of plasma vasopressin levels in rats. Brain Research, 914, 179-184. https://doi.org/10.1016/S0006-8993(01)02799-8 - PubMed
  19. Hwang, E., Kuhn, S. M., & Lange, B. (2019). Motion Sickness. In Travel Medicine, 2, 423-428. - PubMed
  20. Kjaer, A., Larsen, P. J., Knigge, U., Jorgensen, H., & Warberg, J. (1998). Neuronal histamine and expression of corticotropin-releasing hormone, vasopressin and oxytocin in the hypothalamus: Relative importance of H1 and H2 receptors. European Journal of Endocrinology, 139, 238-243. https://doi.org/10.1530/eje.0.1390238 - PubMed
  21. Koch, A., Cascorbi, I., Westhofen, M., Dafotakis, M., Klapa, S., & Kuhtz-Buschbeck, J. P. (2018). The Neurophysiology and Treatment of motion sickness. Deutsches Arzteblatt International, 115, 687-696. - PubMed
  22. Kohl, R. L. (1987). Failure of metoclopramide to control emesis or nausea due to stressful angular or linear acceleration. Aviation Space and Environmental Medicine, 58, 125-131. - PubMed
  23. Leslie, R. A., Shah, Y., Thejomayen, M., Murphy, K. M., & Robertson, H. A. (1990). The neuropharmacology of emesis: The role of receptors in neuromodulation of nausea and vomiting. Canadian Journal of Physiology and Pharmacology, 68, 279-288. https://doi.org/10.1139/y90-042 - PubMed
  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 - PubMed
  25. Lucot, J. B. (1998). Pharmacology of motion sickness. Journal of Vestibular Research, 8, 61-66. https://doi.org/10.3233/VES-1998-8109 - PubMed
  26. Maheswari, D. U., Anand, T., Padma, A., Ilaiyaraja, N., & Khanum, F. (2020). Evaluation of the effect of herbal extracts and their bioactive compounds against motion sickness by regulating neurotransmitter levels in vitro and in vivo. South African Journal of Botany, 130, 130-140. https://doi.org/10.1016/j.sajb.2019.12.012 - PubMed
  27. Miller, J. D., & Brizzee, K. R. (1987). The anti-emetic properties of 1-sulpiride in a ground-based model of space motion sickness. Life Sciences, 41, 1815-1822. https://doi.org/10.1016/0024-3205(87)90700-4 - PubMed
  28. Ossenkopp, K. P., & Frisken, N. L. (1982). Defecation as an index of motion sickness in the rat. Physiological Psychology, 10, 355-360. https://doi.org/10.3758/BF03332964 - PubMed
  29. Oz, M., El Nebrisi, E. G., Yang, K. H. S., Howarth, F. C., & Al Kury, L. T. (2017). Cellular and molecular targets of menthol actions. Frontiers in Pharmacology, 8, 472-485. https://doi.org/10.3389/fphar.2017.00472 - PubMed
  30. Patel, T., Ishiuji, Y., & Yosipovitch, G. (2007). Menthol: A refreshing look at this ancient compound. Journal of American Academy of Dermatology, 57, 873-878. https://doi.org/10.1016/j.jaad.2007.04.008 - PubMed
  31. Pliszka, S. R. (2016). Neuroscience of mental health clinician. Guilford Publications, 2, 316-324. - PubMed
  32. Qi, R., Su, Y., Pan, L., Mao, Y., Liang, L., Dai, Z., Wang, J., & Cai, Y. (2019). Anti-cholinergics mecamylamine and scopolamine alleviate motion sickness-induced gastrointestinal symptoms through both peripheral and central actions. Neuropharmacology, 146, 252-263. https://doi.org/10.1016/j.neuropharm.2018.12.006 - PubMed
  33. Reason, J. T. (1978). Motion sickness adaptation: A neural mismatch model. Journal of the Royal Society of Medicine, 71, 819-829. https://doi.org/10.1177/014107687807101109 - PubMed
  34. Rubio, S., Weichenthal, L., & Andrews, J. (2011). Motion sickness: Comparison of metoclopramide and diphenhydramine to placebo. Prehospital and Disaster Medicine, 26, 305-309. https://doi.org/10.1017/S1049023X11006431 - PubMed
  35. Sakata, Y., Suzuki, H., Satoh, T., Kawatsu, S., Tanabe, K., Okamoto, K., Takagi, S., Komatsu, Y., Kawakami, K., & Yoshida, Y. (1986). Clinical evaluation of sulpiride against nausea and vomiting during cancer chemotherapy compared with domperidone-envelope method. Gan to kagaku ryoho. Cancer Chemotherapy, 13, 2415-2418. - PubMed
  36. Sharman, A., & Low, J. (2008). Vasopressin and its role in critical care. Continuing Education Anaesthesia Critical Care Pain, 8, 134-137. https://doi.org/10.1093/bjaceaccp/mkn021 - PubMed
  37. Smith, H. S., Cox, L. R., & Smith, B. R. (2012). Dopamine receptor antagonists. Annals of Palliative Medicine, 1, 137-142. - PubMed
  38. Smith, S. M., & Vale, W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8, 383-395. - PubMed
  39. Takeda, N., Morita, M., Hasegawa, S., Horii, A., Kubo, T., & Matsunaga, T. (1993). Neuropharmacology of motion sickness and emesis: A review. Acta Otolaryngologica, 113, 10-15. https://doi.org/10.3109/00016489309126205 - PubMed
  40. Takeda, N., Morita, M., Hasegawa, S., Kubo, T., & Matsunaga, T. (1989). Neurochemical mechanisms of motion sickness. American Journal of Otolaryngology, 10, 351-359. https://doi.org/10.1016/0196-0709(89)90112-9 - PubMed
  41. Takeda, N., Morita, M., Horii, A., Nishiike, S., Kitahara, T., & Uno, A. (2001). Neural mechanisms of Motion sickness. The Journal of Medical Investigation, 48, 44-59. - PubMed
  42. Thawkar, B. S. (2016). Phytochemical and pharmacological review of Mentha arvensis. International Journal of Green Pharmacy, 10, 71-76. - PubMed
  43. Wang, J. Q., Li, H. X., Chen, X. M., Mo, F. F., Qi, R. R., Guo, J. S., & Cai, Y. L. (2012). Temporal change in NMDA receptor signaling and GABAA receptor expression in rat caudal vestibular nucleus during motion sickness habituation. Brain Research, 1461, 30-40. - PubMed
  44. Wang, J., Liu, J., Pan, L., Qi, R., Liu, P., Zhou, W., & Cai, Y. (2017). Storage of passive motion pattern in hippocampal CA1 region depends on CaMKII/CREB signaling pathway in a motion sickness rodent model. Scientific Reports, 7, 1-12. https://doi.org/10.1038/srep43385 - PubMed
  45. Xu, L. H., Tang, G. R., Yang, J. J., Liu, H. X., Li, J. C., & Jiang, Z. L. (2015). AVP modulation of the vestibular nucleus via V1b receptors potentially contributes to the development of motion sickness in rat. Molecular Brain, 8, 86-98. https://doi.org/10.1186/s13041-015-0175-1 - PubMed
  46. Yamamoto, T. (2000). The effect of stress application on vestibular compensation. Acta Otolaryngologica, 120, 504-507. https://doi.org/10.1080/000164800750046009 - PubMed
  47. Yu, X. H., Cai, G. J., Liu, A. J., Chu, Z. X., & Su, D. F. (2007). A novel animal model for motion sickness and its first application in rodents. Physiology and Behavior, 92, 702-707. https://doi.org/10.1016/j.physbeh.2007.05.067 - PubMed
  48. Zheng, Y., Wang, X. L., Mo, F. F., & Li, M. (2014). Dexamethasone alleviates MS in rats in part by enhancing the endocannabinoid system. European Journal of Pharmacology, 727, 99-105. - PubMed
  49. Zhou, W., Wang, J., Pan, L., Qi, R., Liu, P., Liu, J., & Cai, Y. (2017). Sex and age differences in motion sickness in rats: The correlation with blood hormone responses and neuronal activation in the vestibular and autonomic nuclei. Frontiers in Aging Neuroscience, 9, 29-43. https://doi.org/10.3389/fnagi.2017.00029 - PubMed

Publication Types