Display options
Share it on

J Magn Reson Imaging. 2021 Jul 09; doi: 10.1002/jmri.27827. Epub 2021 Jul 09.

Inflammation in Remote Myocardium and Left Ventricular Remodeling After Acute Myocardial Infarction: A Pilot Study Using T2 Mapping.

Journal of magnetic resonance imaging : JMRI

Meng-Xi Yang, Ke Shi, Hua-Yan Xu, Yong He, Min Ma, Lu Zhang, Jun-Long Wang, Xue-Sheng Li, Chuan Fu, Hong Li, Bin Zhou, Xiao-Yue Zhou, Zhi Yang, Ying-Kun Guo, Zhi-Gang Yang

Affiliations

  1. Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China.
  2. Department of Radiology, West China Hospital, Sichuan University, Sichuan, China.
  3. Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China.
  4. Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China.
  5. Department of Cardiology, The Sixth People's Hospital of Chengdu, Sichuan, China.
  6. Sichuan Greentech Bioscience Co Ltd, Sichuan, China.
  7. Department of Radiology, West China Second University Hospital, Sichuan University, Sichuan, China.
  8. Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China.
  9. MR Collaboration, Siemens Healthcare Ltd, Shanghai, China.
  10. Department of Radiology, Chengdu Fifth People's Hospital, Sichuan, China.

PMID: 34245075 DOI: 10.1002/jmri.27827

Abstract

BACKGROUND: The pathophysiological changes in the remote myocardium after acute myocardial infarction (MI) remains less understood.

PURPOSE: To assess the inflammation in the remote myocardium post-MI and its association with left ventricular (LV) remodeling using T2 mapping.

STUDY TYPE: Prospective.

ANIMAL MODEL AND SUBJECTS: Twelve pigs at 3-day post-MI, 6 pigs at 3-month post-MI, 6 healthy pigs; 54 patients at 3-day and 3-month post-MI, 31 healthy volunteers; FIELD STRENGTH/SEQUENCE: A 3 T MRI/ steady-state free-precession sequence for T2 mapping (animals: 0, 30, and 55 msec; human: 0, 25, and 55 msec), phase-sensitive inversion recovery gradient echo for late gadolinium enhancement (LGE), balanced steady free-precession sequence for cine.

ASSESSMENT: Infarcted myocardium was defined on LGE, remote T2 was measured on T2 maps. LV remodeling was evaluated as LV end-diastolic volume change index between two scans using cine. CD68 staining was conducted to detect monocyte/macrophage.

STATISTICAL TESTS: Student-t test and one-way ANOVA were used to compare remote T2 with normal controls. The association of remote T2 with LV remodeling was assessed using linear regression. P values of <0.05 were used to denote statistical significance.

RESULTS: Compared with healthy pigs, remote T2 significantly increased from 3 days to 3 months post-MI (31.43 ± 0.67 vs. 33.53 ± 1.15 vs. 36.43 ± 1.07 msec). CD68 staining demonstrated the inflammation in remote myocardium post-MI but not in healthy pigs. Significant remote myocardial alterations in T2 were also observed in human group (40.51 ± 1.79 vs. 41.94 ± 1.14 vs. 42.52 ± 1.71 msec). In patients, the 3-month remote T2 (β = 0.432) and remote T2 variation between two scans (β = 0.554) were both independently associated with LV remodeling.

CONCLUSION: T2 mapping could characterize the abnormalities in the remote myocardium post-MI, which was potentially caused by the inflammatory response. Moreover, variations in remote T2 were associated with LV remodeling.

EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.

© 2021 International Society for Magnetic Resonance in Medicine.

Keywords: T2 mapping; acute myocardial infarction; inflammation; remote myocardium

References

  1. Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102(2):240-8. - PubMed
  2. Ferreira VM. T1 mapping of the remote myocardium: When normal is not normal. J Am Coll Cardiol. 2018;71(7):779-81. - PubMed
  3. Ruparelia N, Digby JE, Jefferson A, Medway DJ, Neubauer S, Lygate CA, et al. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm Res. 2013;62(5):515-25. - PubMed
  4. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153-63. - PubMed
  5. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation. 2000;101(25):2981-8. - PubMed
  6. Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation. 1994;89(1):151-63. - PubMed
  7. Carberry J, Carrick D, Haig C, Rauhalammi SM, Ahmed N, Mordi I, et al. Remote zone extracellular volume and left ventricular remodeling in survivors of ST-elevation myocardial infarction. Hypertension. 2016;68(2):385-91. - PubMed
  8. Garg P, Broadbent DA, Swoboda PP, Foley JRJ, Fent GJ, Musa TA, et al. Extra-cellular expansion in the normal, non-infarcted myocardium is associated with worsening of regional myocardial function after acute myocardial infarction. J Cardiovasc Magn Reson. 2017;19(1):73. - PubMed
  9. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, et al. Pathophysiology of LV remodeling in survivors of STEMI: inflammation, remote myocardium, and prognosis. JACC Cardiovasc Imaging. 2015;8(7):779-89. - PubMed
  10. Chan W, Duffy SJ, White DA, Gao XM, du XJ, Ellims AH, et al. Acute left ventricular remodeling following myocardial infarction: Coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc Imaging. 2012;5(9):884-93. - PubMed
  11. Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel. J Am Coll Cardiol. 2019;74(2):238-56. - PubMed
  12. Reinstadler SJ, Stiermaier T, Liebetrau J, Fuernau G, Eitel C, de Waha S, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction. JACC Cardiovasc Imaging. 2018;11(3):411-9. - PubMed
  13. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: Basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016;9(1):67-81. - PubMed
  14. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations. J Am Coll Cardiol. 2018;72(24):3158-76. - PubMed
  15. Lota AS, Gatehouse PD, Mohiaddin RH. T2 mapping and T2* imaging in heart failure. Heart Fail Rev. 2017;22(4):431-40. - PubMed
  16. Kotanidis CP, Bazmpani MA, Haidich AB, Karvounis C, Antoniades C, Karamitsos TD. Diagnostic accuracy of cardiovascular magnetic resonance in acute myocarditis: A systematic review and meta-analysis. JACC Cardiovasc Imaging. 2018;11(11):1583-90. - PubMed
  17. McAlindon EJ, Pufulete M, Harris JM, et al. Measurement of myocardium at risk with cardiovascular MR: Comparison of techniques for edema imaging. Radiology. 2015;275(1):61-70. - PubMed
  18. Bulluck H, White SK, Rosmini S, Bhuva A, Treibel TA, Fontana M, et al. T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients. J Cardiovasc Magn Reson. 2015;17(1):73. - PubMed
  19. Ghugre NR, Pop M, Barry J, Connelly KA, Wright GA. Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magn Reson Med. 2013;70(4):1095-105. - PubMed
  20. Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, et al. Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med. 2011;66(4):1129-41. - PubMed
  21. Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, et al. Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction. Circ Cardiovasc Imaging. 2012;5(5):566-72. - PubMed
  22. Assimopoulos S, Shie N, Ramanan V, Qi X, Barry J, Strauss BH, et al. Hemorrhage promotes chronic adverse remodeling in acute myocardial infarction: A T1, T2 and BOLD study. NMR Biomed. 2021;34(1):e4404. - PubMed
  23. van der Pals J, Hammer-Hansen S, Nielles-Vallespin S, Kellman P, Taylor J, Kozlov S, et al. Temporal and spatial characteristics of the area at risk investigated using computed tomography and T1-weighted magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2015;16(11):1232-40. - PubMed
  24. McCartney PJ, Eteiba H, Maznyczka AM, et al. Effect of low-dose intracoronary Alteplase during primary percutaneous coronary intervention on microvascular obstruction in patients with acute myocardial infarction: A randomized clinical trial. JAMA. 2019;321(1):56-68. - PubMed
  25. Robbers LF, Eerenberg ES, Teunissen PF, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34(30):2346-53. - PubMed
  26. Nakamori S, Dohi K, Ishida M, Goto Y, Imanaka-Yoshida K, Omori T, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging. 2018;11(1):48-59. - PubMed
  27. Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. 2019;234(10):17690-703. - PubMed
  28. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60(16):1581-98. - PubMed
  29. Elgavish GA, Simor T, van der Geest RJ, Suranyi P, Kiss PP, Lenkey Z, et al. The MRI characteristics of the no-flow region are similar in reperfused and non-reperfused myocardial infarcts: An MRI and histopathology study in swine. Eur Radiol Exp. 2017;1(1):2. - PubMed
  30. Gerber BL, Rochitte CE, Melin JA, McVeigh ER, Bluemke DA, Wu KC, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation. 2000;101(23):2734-41. - PubMed
  31. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, et al. Myocardial T1 and T2 mapping at 3 T: Reference values, influencing factors and implications. J Cardiovasc Magn Reson. 2013;15(1):53. - PubMed
  32. Kidambi A, Motwani M, Uddin A, Ripley DP, McDiarmid A, Swoboda PP, et al. Myocardial extracellular volume estimation by CMR predicts functional recovery following acute MI. JACC Cardiovasc Imaging. 2017;10(9):989-99. - PubMed
  33. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A, et al. Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation. 1999;99(11):1492-8. - PubMed
  34. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037-47. - PubMed
  35. Fernández-Jiménez R, Sánchez-González J, Agüero J, García-Prieto J, López-Martín GJ, García-Ruiz JM, et al. Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern: Imaging and histological tissue characterization. J Am Coll Cardiol. 2015;65(4):315-23. - PubMed
  36. Fernández-Jiménez R, Barreiro-Pérez M, Martin-García A, Sánchez-González J, Agüero J, Galán-Arriola C, et al. Dynamic edematous response of the human heart to myocardial infarction: Implications for assessing myocardial area at risk and salvage. Circulation. 2017;136(14):1288-300. - PubMed
  37. Tahir E, Sinn M, Bohnen S, Avanesov M, Säring D, Stehning C, et al. Acute versus chronic myocardial infarction: Diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation. Radiology. 2017;285(1):83-91. - PubMed
  38. Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, et al. Native T1 and ECV of noninfarcted myocardium and outcome in patients with coronary artery disease. J Am Coll Cardiol. 2018;71(7):766-78. - PubMed
  39. Bönner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, et al. Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson. 2015;17(1):9. - PubMed
  40. Roy C, Slimani A, de Meester C, Amzulescu M, Pasquet A, Vancraeynest D, et al. Age and sex corrected normal reference values of T1, T2 T2* and ECV in healthy subjects at 3T CMR. J Cardiovasc Magn Reson. 2017;19(1):72. - PubMed

Publication Types

Grant support