Display options
Share it on

Genes Chromosomes Cancer. 2021 Nov;60(11):723-732. doi: 10.1002/gcc.22981. Epub 2021 Jul 21.

CARMN-NOTCH2 fusion transcript drives high NOTCH2 expression in glomus tumors of the upper digestive tract.

Genes, chromosomes & cancer

Nicolas Girard, Cristi Marin, Zofia Hélias-Rodzewicz, Chiara Villa, Catherine Julié, Anne-Sophie de Lajarte-Thirouard, Simon Martin de Beauce, Christine Lagorce-Pages, Florence Renaud, Dominique Cazals-Hatem, Nathalie Guedj, Jérome Cros, Marie-Laure Raffin-Sanson, Janick Selves, Benoit Terris, Jean-François Fléjou, Henri-Jean Garchon, Jean-Michel Coindre, Jean-François Emile

Affiliations

  1. EA4340 Research Unit, University of Versailles SQY, Boulogne, France.
  2. Department of Pathology, Ambroise Paré Hospital, Boulogne, France.
  3. Department of Pathology, Foch Hospital, Suresnes, France.
  4. Department of Pathology, Centre Hospitalier Universitaire de Pontchaillou, Rennes, France.
  5. Department of Pathology, Centre Hospitalier de Valenciennes, Valenciennes, France.
  6. INSERM UMRS1138 Unit, Centre de Recherche des Cordeliers, Paris, France.
  7. University of Paris Descartes, Paris, France.
  8. Department of Pathology, Georges Pompidou European Hospital, Paris, France.
  9. University of Lille Nord de France, Lille, France.
  10. INSERM, UMR-S 1172 Unit, Lille, France.
  11. Department of Pathology, Lille University Hospital, Lille, France.
  12. University Hospital Department (DHU) UNITY, Beaujon Hospital, Clichy, France.
  13. Inflammation Research Center (CRI), UMR 1149 Unit, University of Paris Diderot and INSERM, Paris, France.
  14. Department of Pathology, Beaujon Hospital, Clichy, France.
  15. Endocrinology and Nutrition Department, Ambroise Paré Hospital, Boulogne, France.
  16. INSERM U1173 Unit, University of Versailles SQY, Montigny-le-Bretonneux, France.
  17. Department of Pathology, Oncopole, Toulouse, France.
  18. INSERM, U1016 Unit, Cochin Institute, Paris, France.
  19. CNRS, UMR8104 Unit, University of Paris Descartes, Paris, France.
  20. Department of Pathology, Cochin Institute, Paris, France.
  21. Department of Pathology, Saint-Antoine Hospital, Paris, France.
  22. Faculty of Health Sciences Simone Veil, University of Versailles SQY, Montigny-le-Bretonneux, France.
  23. Department of Pathology, Bergonié Institute, Bordeaux, France.
  24. INSERM U916 Unit, Bergonié Institute, Bordeaux, France.
  25. Department of Pathology, University of Victor Segalen, Bordeaux, France.

PMID: 34245196 DOI: 10.1002/gcc.22981

Abstract

Glomus tumors (GTs) are perivascular tumors mostly occurring in the distal extremities. Rare cases arise in the digestive tract and may be misdiagnosed with neuroendocrine or gastrointestinal stromal tumors. We aimed to specify the features of GT of the upper digestive tract. Clinical, histological, phenotypic, and molecular features of 16 digestive GTs were analyzed, of whom two underwent whole exome and RNA sequencing to search for gene alterations. RNA-sequencing disclosed a t(1:5)(p13;q32) translocation, which resulted in the fusion of CARMN and NOTCH2 in two GTs. The fusion gene encoded a protein sequence corresponding to the NOTCH2 intracellular domain that functions as transcription factor. These finding was supported by high expression of genes targeted by NOTCH. The CARMN-NOTCH2 translocation was detected in 14 out of 16 (88%) GTs of the upper digestive tract; but in only in two out of six cutaneous GTs (33%). Most digestive GT arose from the stomach (n = 13), and the others from duodenal (2) or oesophagous (1). Nuclear expression of NOTCH2 was detected in the 14 cases containing the fusion transcripts. The CARMN-NOTCH2 fusion transcript may contribute to activation of the NOTCH2 pathway in GT and drive tumor development. The high frequency of this translocation in GT of the upper digestive track suggest that detection of nuclear NOTCH2 expression may be useful diagnostic biomarker of these tumors.

© 2021 Wiley Periodicals LLC.

Keywords: CARMN; NOTCH2; digestive tract; glomus tumor; translocation

References

  1. WHO Classification of Tumours. Tissue and Bone Tumours: WHO Classification of Tumours. Vol 3. 5th ed. Lyon, France: IARC Publications; 2020:179-181. - PubMed
  2. Wang Z-B, Yuan J, Shi H-Y. Features of gastric glomus tumor: a clinicopathologic, immunohistochemical and molecular retrospective study. Int J Clin Exp Pathol. 2014;7(4):1438-1448. - PubMed
  3. Murad TM, von Haam E, Murthy MS. Ultrastructure of a hemangiopericytoma and a glomus tumor. Cancer. 1968;22(6):1239-1249. - PubMed
  4. Toker C. Glomangioma. An ultrastructural study. Cancer. 1969;23(2):487-492. - PubMed
  5. Venkatachalam MA, Greally JG. Fine structure of glomus tumor: similarity of glomus cells to smooth muscle. Cancer. 1969;23(5):1176-1184. - PubMed
  6. Tsuneyoshi M, Enjoji M. Glomus tumor: a clinicopathologic and electron microscopic study. Cancer. 1982;50(8):1601-1607. - PubMed
  7. Appelman HD, Helwig EB. Glomus tumors of the stomach. Cancer. 1969;23(1):203-213. - PubMed
  8. Kanwar YS, Manaligod JR. Glomus tumor of the stomach. An ultrastructural study. Arch Pathol. 1975;99(7):392-397. - PubMed
  9. Miettinen M, Paal E, Lasota J, Sobin LH. Gastrointestinal glomus tumors: a clinicopathologic, immunohistochemical, and molecular genetic study of 32 cases. Am J Surg Pathol. 2002;26(3):301-311. - PubMed
  10. Lin J, Shen J, Yue H, Li Q, Cheng Y, Zhou M. Gastric glomus tumor: a clinicopathologic and immunohistochemical study of 21 cases. Biomed Res Int. 2020;2020:5637893. - PubMed
  11. Folpe AL, Fanburg-Smith JC, Miettinen M, Weiss SW. Atypical and malignant glomus tumors: analysis of 52 cases, with a proposal for the reclassification of glomus tumors. Am J Surg Pathol. 2001;25(1):1-12. - PubMed
  12. Mosquera J-M, Sboner A, Zhang L, et al. Novel MIR143-NOTCH fusions in benign and malignant glomus tumors. Genes Chromosomes Cancer. 2013;52(11):1075-1087. - PubMed
  13. Moreau S, Saiag P, Aegerter P, et al. Prognostic value of BRAF(V600) mutations in melanoma patients after resection of metastatic lymph nodes. Ann Surg Oncol. 2012;19(13):4314-4321. - PubMed
  14. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013; Chapter 7:Unit7.20. - PubMed
  15. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-1081. - PubMed
  16. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361-362. - PubMed
  17. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. - PubMed
  18. Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7:562-578. - PubMed
  19. Espiard S, Drougat L, Libé R, et al. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab. 2015;100(6):E926-E935. - PubMed
  20. Maier MM, Gessler M. Comparative analysis of the human and mouse Hey1 promoter: hey genes are new notch target genes. Biochem Biophys Res Commun. 2000;275(2):652-660. - PubMed
  21. Krebs LT, Deftos ML, Bevan MJ, Gridley T. The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway. Dev Biol. 2001;238(1):110-119. - PubMed
  22. Aster JC, Pear WS, Blacklow SC. The varied roles of notch in cancer. Annu Rev Pathol. 2017;12:245-275. - PubMed
  23. Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer. 2017;17(3):145-159. - PubMed
  24. Robin YM, Penel N, Pérot G, et al. Transgelin is a novel marker of smooth muscle differentiation that improves diagnostic accuracy of leiomyosarcomas: a comparative immunohistochemical reappraisal of myogenic markers in 900 soft tissue tumors. Mod Pathol. 2013;26(4):502-510. - PubMed
  25. Baek YH, Choi SR, Lee BE, Kim GH. Gastric glomus tumor: analysis of endosonographic characteristics and computed tomographic findings. Dig Endosc. 2013;25(1):80-83. - PubMed
  26. Kang G, Park HJ, Kim JY, et al. Glomus tumor of the stomach: a clinicopathologic analysis of 10 cases and review of the literature. Gut Liver. 2012;6(1):52-57. - PubMed
  27. Brouillard P, Boon LM, Revencu N, et al. Genotypes and phenotypes of 162 families with a glomulin mutation. Mol Syndromol. 2013;4(4):157-164. - PubMed
  28. Brems H, Park C, Maertens O, et al. Glomus tumors in neurofibromatosis type 1: genetic, functional, and clinical evidence of a novel association. Cancer Res. 2009;69(18):7393-7401. - PubMed
  29. Chakrapani A, Warrick A, Nelson D, Beadling C, Corless CL. BRAF and KRAS mutations in sporadic glomus tumors. Am J Dermatopathol. 2012;34(5):533-535. - PubMed
  30. Agaram NP, Zhang L, Jungbluth AA, Dickson BC, Antonescu CR. A molecular reappraisal of glomus tumors and related Pericytic neoplasms with emphasis on NOTCH-gene fusions. Am J Surg Pathol. 2020;44(11):1556-1562. - PubMed
  31. Henshall TL, Keller A, He L, et al. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol. 2015;35(2):409-420. - PubMed
  32. Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, et al. Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J Exp Med. 2017;214(8):2271-2282. - PubMed
  33. De Falco F, Sabatini R, Del Papa B, et al. Notch signaling sustains the expression of Mcl-1 and the activity of eIF4E to promote cell survival in CLL. Oncotarget. 2015;6(18):16559-16572. - PubMed
  34. Hayashi Y, Osanai M, Lee G-H. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells. Oncol Rep. 2015;34(4):1650-1658. - PubMed
  35. Ounzain S, Micheletti R, Arnan C, et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol. 2015;89(Pt A:98-112. - PubMed
  36. Du C, Shen Z, Zang R, et al. Negative feedback circuitry between MIR143HG and RBM24 in Hirschsprung disease. Biochim Biophys Acta. 2016;1862(11):2127-2136. - PubMed
  37. Boettger T, Beetz N, Kostin S, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119(9):2634-2647. - PubMed
  38. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705-710. - PubMed

Publication Types

Grant support