Display options
Share it on

Adv Funct Mater. 2020 Feb 26;30(9). doi: 10.1002/adfm.201908825. Epub 2020 Jan 08.

Gold Nanoframeworks with Mesopores for Raman-Photoacoustic Imaging and Photo-Chemo Tumor Therapy in the Second Near-Infrared Biowindow.

Advanced functional materials

Jinping Wang, Jingyu Sun, Yuhao Wang, Tsengming Chou, Qiang Zhang, Beilu Zhang, Lei Ren, Hongjun Wang

Affiliations

  1. Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
  2. Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
  3. Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
  4. Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China.

PMID: 34163312 PMCID: PMC8218930 DOI: 10.1002/adfm.201908825

Abstract

Gold-based nanostructures with tunable wavelength of localized surface plasmon resonance (LSPR) in the second near-infrared (NIR-II) biowindow receive increasing attention in phototheranostics. In view of limited progress on NIR-II gold nanostructures, a particular liposome template-guided route is explored to synthesize novel gold nanoframeworks (AuNFs) with large mesopores (≈40 nm) for multimodal imaging along with therapeutic robustness. The synthesized AuNFs exhibit strong absorbance in NIR-II region, affording their capacity of NIR-II photothermal therapy (PTT) and photoacoustic (PA) imaging for deep tumors. Functionalization of AuNFs with hyaluronic acid (HA) endows the targeting capacity for CD44-overexpressed tumor cells while gatekeeping doxorubicin (DOX) loaded into mesopores. Conjugation of Raman reporter 4-aminothiophenol (4-ATP) onto AuNFs yields a surface-enhanced Raman scattering (SERS) fingerprint for Raman spectroscopy/imaging. In vivo evaluation of HA-4-ATP-AuNFs-DOX on tumor-bearing xenografts demonstrates its high efficacy in eradication of solid tumors in NIR-II under PA-Raman dual image-guided photo-chemotherapy. Thus, current AuNFs offer versatile capabilities for phototheranostics.

Keywords: Raman imaging; chemotherapy; gold nanoframeworks; photoacoustic imaging; second near-infrared photothermal therapy

Conflict of interest statement

Conflict of Interest The authors declare no conflict of interest.

References

  1. Nat Commun. 2016 Feb 04;7:10437 - PubMed
  2. Biomacromolecules. 2009 Mar 9;10(3):589-95 - PubMed
  3. Nano Lett. 2018 Apr 11;18(4):2217-2225 - PubMed
  4. Annu Rev Physiol. 1998;60:619-42 - PubMed
  5. Trends Pharmacol Sci. 2018 Jan;39(1):59-74 - PubMed
  6. Adv Mater. 2014 Jun 4;26(21):3433-40 - PubMed
  7. J Am Chem Soc. 2017 Nov 15;139(45):16235-16247 - PubMed
  8. Chem Soc Rev. 2013 Jan 21;42(2):530-47 - PubMed
  9. Chem Soc Rev. 2012 Apr 7;41(7):2740-79 - PubMed
  10. Nat Mater. 2016 Feb;15(2):235-42 - PubMed
  11. Breast Cancer Res. 2006;8(5):R59 - PubMed
  12. Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 - PubMed
  13. Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):268-73 - PubMed
  14. Angew Chem Int Ed Engl. 2015 Oct 5;54(41):12091-6 - PubMed
  15. ACS Nano. 2019 Feb 26;13(2):1499-1510 - PubMed
  16. Chem Rev. 2014 Nov 12;114(21):10869-939 - PubMed
  17. ACS Nano. 2014 May 27;8(5):5105-15 - PubMed
  18. Int J Cancer. 2011 Mar 15;128(6):1303-15 - PubMed
  19. ACS Nano. 2015 Jan 27;9(1):52-61 - PubMed
  20. J Am Chem Soc. 2009 Apr 8;131(13):4616-8 - PubMed
  21. Nat Commun. 2014 Jul 07;5:4348 - PubMed
  22. Small. 2016 Aug;12(30):4136-45 - PubMed
  23. Ann Transl Med. 2016 Oct;4(Suppl 1):S51 - PubMed
  24. Biomaterials. 2016 Nov;108:35-43 - PubMed
  25. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607-12 - PubMed
  26. ACS Nano. 2018 May 22;12(5):4545-4555 - PubMed
  27. J Hematol Oncol. 2018 May 10;11(1):64 - PubMed
  28. Nano Lett. 2018 Dec 12;18(12):7485-7493 - PubMed
  29. J Am Chem Soc. 2016 Feb 3;138(4):1258-64 - PubMed
  30. ACS Nano. 2019 Jan 22;13(1):284-294 - PubMed
  31. ACS Nano. 2018 Aug 28;12(8):7974-7985 - PubMed
  32. Adv Drug Deliv Rev. 2013 May;65(5):663-76 - PubMed
  33. Adv Mater. 2018 Jun;30(23):e1706320 - PubMed
  34. ACS Nano. 2016 May 24;10(5):5015-26 - PubMed
  35. ACS Appl Mater Interfaces. 2017 Oct 25;9(42):36533-36547 - PubMed
  36. Nat Commun. 2019 Apr 26;10(1):1926 - PubMed
  37. Theranostics. 2017 Apr 10;7(6):1650-1662 - PubMed
  38. Nano Lett. 2016 Jun 8;16(6):3675-81 - PubMed
  39. Nano Lett. 2010 Oct 13;10(10):4013-9 - PubMed
  40. Chem Soc Rev. 2017 Jul 7;46(13):4042-4076 - PubMed
  41. Nat Chem. 2011 Jun;3(6):467-72 - PubMed
  42. Adv Mater. 2009 Apr 20;21(31):3175-3180 - PubMed
  43. ACS Nano. 2019 Feb 26;13(2):2223-2235 - PubMed
  44. ACS Nano. 2018 Mar 27;12(3):2643-2651 - PubMed
  45. Biomaterials. 2016 Sep;102:87-97 - PubMed
  46. Nano Lett. 2010 Nov 10;10(11):4488-93 - PubMed
  47. Oncol Rep. 2013 Aug;30(2):685-94 - PubMed
  48. ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17166-75 - PubMed
  49. ACS Nano. 2009 Aug 25;3(8):2191-8 - PubMed
  50. Nanoscale. 2013 Sep 7;5(17):7882-9 - PubMed
  51. Colloids Surf B Biointerfaces. 2015 May 1;129:175-82 - PubMed
  52. Stem Cells Transl Med. 2015 Sep;4(9):1033-43 - PubMed
  53. Adv Mater. 2016 Apr;28(16):3094-101 - PubMed
  54. Adv Mater. 2016 Oct;28(37):8218-8226 - PubMed

Publication Types

Grant support