Display options
Share it on

Cell Mol Neurobiol. 2021 Jul 03; doi: 10.1007/s10571-021-01123-1. Epub 2021 Jul 03.

Dendrites of Neocortical Pyramidal Neurons: The Key to Understand Intellectual Disability.

Cellular and molecular neurobiology

Alberto Granato, Adalberto Merighi

Affiliations

  1. Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy. [email protected].
  2. Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.

PMID: 34216332 DOI: 10.1007/s10571-021-01123-1

Abstract

Pyramidal neurons (PNs) are the most abundant cells of the neocortex and display a vast dendritic tree, divided into basal and apical compartments. Morphological and functional anomalies of PN dendrites are at the basis of virtually all neurological and mental disorders, including intellectual disability. Here, we provide evidence that the cognitive deficits observed in different types of intellectual disability might be sustained by different parts of the PN dendritic tree, or by a dysregulation of their interaction.

Keywords: Apical dendrite; Calcium; Cerebral cortex; Dendritic spike; Down syndrome; Fetal alcohol

References

  1. Alevriadou A, Hatzinikolaou K, Tsakiridou H, Grouios G (2004) Field dependence-independence of normally developing and mentally retarded boys of low and upper/middle socioeconomic status. Percept Mot Skills 99(3 Pt 1):913–923. https://doi.org/10.2466/pms.99.3.913-923 - PubMed
  2. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. APA, Washington, DC - PubMed
  3. Atkinson SE, Williams SR (2009) Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons. J Neurophysiol 102(2):735–751. https://doi.org/10.1152/jn.00083.2009 - PubMed
  4. Bagni C, Greenough WT (2005) From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6(5):376–387. https://doi.org/10.1038/nrn1667 - PubMed
  5. Becker LE, Armstrong DL, Chan F (1986) Dendritic atrophy in children with Down’s syndrome. Ann Neurol 20(4):520–526. https://doi.org/10.1002/ana.410200413 - PubMed
  6. Benavides-Piccione R, Ballesteros-Yáñez I, de Lagrán MM, Elston G, Estivill X, Fillat C, Defelipe J, Dierssen M (2004) On dendrites in Down syndrome and DS murine models: a spiny way to learn. Prog Neurobiol 74(2):111–126. https://doi.org/10.1016/j.pneurobio.2004.08.001 - PubMed
  7. Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J (2013) Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb Cortex 23:1798–1810. https://doi.org/10.1093/cercor/bhs154 - PubMed
  8. Brager DH, Johnston D (2014) Channelopathies and dendritic dysfunction in fragile X syndrome. Brain Res Bull 103:11–17. https://doi.org/10.1016/j.brainresbull.2014.01.002 - PubMed
  9. Cajal SRy (1917) Recuerdos de mi vida: historia de mi labor científica, vol 2. Moya, Madrid - PubMed
  10. Carr JL, Agnihotri S, Keightley M (2010) Sensory processing and adaptive behavior deficits of children across the fetal alcohol spectrum disorder continuum. Alcohol Clin Exp Res 34(6):1022–1032. https://doi.org/10.1111/j.1530-0277.2010.01177.x - PubMed
  11. Cauller L (1995) Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71(1):163–170. https://doi.org/10.1016/0166-4328(95)00032-1 - PubMed
  12. Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390(2):297–310 - PubMed
  13. Cichon J, Gan WB (2015) Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature 520(7546):180–185. https://doi.org/10.1038/nature14251 - PubMed
  14. Constantinople CM, Bruno RM (2013) Deep cortical layers are activated directly by thalamus. Science 340(6140):1591–1594. https://doi.org/10.1126/science.1236425 - PubMed
  15. Coogan TA, Burkhalter A (1990) Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex. Exp Brain Res 80(1):49–53. https://doi.org/10.1007/BF00228846 - PubMed
  16. Davie JT, Kole MH, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Häusser M (2006) Dendritic patch-clamp recording. Nat Protoc 1(3):1235–1247. https://doi.org/10.1038/nprot.2006.164 - PubMed
  17. De Giorgio A, Granato A (2015) Reduced density of dendritic spines in pyramidal neurons of rats exposed to alcohol during early postnatal life. Int J Dev Neurosci 41:74–79. https://doi.org/10.1016/j.ijdevneu.2015.01.005 - PubMed
  18. DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14:202–216. https://doi.org/10.1038/nrn3444 - PubMed
  19. Dierssen M, Ramakers GJ (2006) Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes Brain Behav 5(Suppl 2):48–60. https://doi.org/10.1111/j.1601-183X.2006.00224.x - PubMed
  20. Dierssen M, Fillat C, Crnic L, Arbonés M, Flórez J, Estivill X (2001) Murine models for Down syndrome. Physiol Behav 73(5):859–871. https://doi.org/10.1016/s0031-9384(01)00523-6 - PubMed
  21. Elston GN (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13:1124–1138. https://doi.org/10.1093/cercor/bhg093 - PubMed
  22. Elston GN (2007) Specializations in pyramidal cell structure during primate evolution. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems. Academic Press, Oxford, pp 191–242 - PubMed
  23. Elston GN, DeFelipe J (2002) Spine distribution in cortical pyramidal cells: a common organizational principle across species. Prog Brain Res 136:109–133. https://doi.org/10.1016/s0079-6123(02)36012-6 - PubMed
  24. Elston GN, Fujita I (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 8:78. https://doi.org/10.3389/fnana.2014.00078 - PubMed
  25. Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: a comparative study in human and monkey. J Neurosci 21:RC163. https://doi.org/10.1523/JNEUROSCI.21-17-j0002.2001 - PubMed
  26. Fry AE, Fawcett KA, Zelnik N, Yuan H, Thompson BAN et al (2018) De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 141:698–712. https://doi.org/10.1093/brain/awx358 - PubMed
  27. Goriounova NA, Heyer DB, Wilbers R, Verhoog MB, Giugliano M, Verbist C, Obermayer J, Kerkhofs A, Smeding H, Verberne M, Idema S, Baayen JC, Pieneman AW, de Kock CP, Klein M, Mansvelder HD (2018) Large and fast human pyramidal neurons associate with intelligence. Elife. https://doi.org/10.7554/eLife.41714 - PubMed
  28. Gould E, Allan MD, McEwen BS (1990) Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone. Brain Res 525(2):327–329. https://doi.org/10.1016/0006-8993(90)90884-e - PubMed
  29. Granato A (2006) Altered organization of cortical interneurons in rats exposed to ethanol during neonatal life. Brain Res 1069(1):23–30. https://doi.org/10.1016/j.brainres.2005.11.024 - PubMed
  30. Granato A, De Giorgio A (2014) Alterations of neocortical pyramidal neurons: turning points in the genesis of mental retardation. Front Pediatr 2:86. https://doi.org/10.3389/fped.2014.00086 - PubMed
  31. Granato A, Di Rocco F, Zumbo A, Toesca A, Giannetti S (2003) Organization of cortico-cortical associative projections in rats exposed to ethanol during early postnatal life. Brain Res Bull 60(4):339–344. https://doi.org/10.1016/S0361-9230(03)00052-2 - PubMed
  32. Granato A, Palmer LM, De Giorgio A, Tavian D, Larkum ME (2012) Early exposure to alcohol leads to permanent impairment of dendritic excitability in neocortical pyramidal neurons. J Neurosci 32(4):1377–1382. https://doi.org/10.1523/JNEUROSCI.5520-11.2012 - PubMed
  33. Guerguiev J, Lillicrap TP, Richards BA (2017) Towards deep learning with segregated dendrites. eLife 6:e22901. https://doi.org/10.7554/eLife.22901 - PubMed
  34. Hamilton GF, Whitcher LT, Klintsova AY (2010) Postnatal binge-like alcohol exposure decreases dendritic complexity while increasing the density of mature spines in mPFC Layer II/III pyramidal neurons. Synapse 64(2):127–135. https://doi.org/10.1002/syn.20711 - PubMed
  35. Ipiña SL, Ruiz-Marcos A (1986) Dendritic structure alterations induced by hypothyroidism in pyramidal neurons of the rat visual cortex. Brain Res 394(1):61–67. https://doi.org/10.1016/0165-3806(86)90082-9 - PubMed
  36. Jacobs B, Scheibel AB (2002) Regional dendritic variation in primate cortical pyramidal cells. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor and Francis, London, pp 111–131 - PubMed
  37. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799–811. https://doi.org/10.1016/s0896-6273(00)80596-6 - PubMed
  38. Kampa BM, Letzkus JJ, Stuart GJ (2006) Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J Physiol 574(Pt 1):283–290. https://doi.org/10.1113/jphysiol.2006.111062 - PubMed
  39. Karnani MM, Agetsuma M, Yuste R (2014) A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr Opin Neurobiol 26:96–102. https://doi.org/10.1016/j.conb.2013.12.015 - PubMed
  40. Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10(10):981–991. https://doi.org/10.1093/cercor/10.10.981 - PubMed
  41. Knafo S, Grossman Y, Barkai E, Benshalom G (2001) Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. Eur J Neurosci 13(3):633–638. https://doi.org/10.1046/j.1460-9568.2001.01422.x - PubMed
  42. Krieger P, de Kock CPJ, Frick A (2017) Calcium dynamics in basal dendrites of layer 5A and 5B pyramidal neurons is tuned to the cell-type specific physiological action potential discharge. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00194 - PubMed
  43. LaBerge D (2006) Apical dendrite activity in cognition and consciousness. Conscious Cogn 15(2):235–257. https://doi.org/10.1016/j.concog.2005.09.007 - PubMed
  44. Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J Comp Neurol 306(2):307–319. https://doi.org/10.1002/cne.903060207 - PubMed
  45. Larkum M (2013) A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci 36(3):141–151. https://doi.org/10.1016/j.tins.2012.11.006 - PubMed
  46. Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398(6725):338–341. https://doi.org/10.1038/18686 - PubMed
  47. Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325(5941):756–760. https://doi.org/10.1126/science.1171958 - PubMed
  48. Lemke JR, Geider K, Helbig KL, Heyne HO, Schütz H et al (2016) Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy. Neurology 86:2171–2178. https://doi.org/10.1212/WNL.0000000000002740 - PubMed
  49. Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212(1):3–17. https://doi.org/10.1007/s00429-007-0144-2 - PubMed
  50. Luebke JI (2017) Pyramidal neurons are not generalizable building blocks of cortical networks. Front Neuroanat 11:11. https://doi.org/10.3389/fnana.2017.00011 - PubMed
  51. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366. https://doi.org/10.1038/382363a0 - PubMed
  52. Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT (2019) Computational modeling of genetic contributions to excitability and neural coding in layer V pyramidal cells: applications to schizophrenia pathology. Front Comput Neurosci 13:66–66. https://doi.org/10.3389/fncom.2019.00066 - PubMed
  53. Marini C, Porro A, Rastetter A, Dalle C, Rivolta I, Bauer D, Oegema R, Nava C, Parrini E, Mei D, Mercer C, Dhamija R, Chambers C, Coubes C, Thévenon J, Kuentz P, Julia S, Pasquier L, Dubourg C, Carré W, Rosati A, Melani F, Pisano T, Giardino M, Innes AM, Alembik Y, Scheidecker S, Santos M, Figueiroa S, Garrido C, Fusco C, Frattini D, Spagnoli C, Binda A, Granata T, Ragona F, Freri E, Franceschetti S, Canafoglia L, Castellotti B, Gellera C, Milanesi R, Mancardi MM, Clark DR, Kok F, Helbig KL, Ichikawa S, Sadler L, Neupauerová J, Laššuthova P, Šterbová K, Laridon A, Brilstra E, Koeleman B, Lemke JR, Zara F, Striano P, Soblet J, Smits G, Deconinck N, Barbuti A, DiFrancesco D, LeGuern E, Guerrini R, Santoro B, Hamacher K, Thiel G, Moroni A, DiFrancesco JC, Depienne C (2018) HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain 141(11):3160–3178. https://doi.org/10.1093/brain/awy263 - PubMed
  54. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807. https://doi.org/10.1038/nrn1519 - PubMed
  55. Meredith RM, Holmgren CD, Weidum M, Burnashev N, Mansvelder HD (2007) Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54(4):627–638. https://doi.org/10.1016/j.neuron.2007.04.028 - PubMed
  56. Meyer HS, Wimmer VC, Hemberger M, Bruno RM, de Kock CPJ, Frick A, Sakmann B, Helmstaedter M (2010) Cell type-specific thalamic innervation in a column of rat vibrissal cortex. Cereb Cortex (New York, NY : 1991) 20(10):2287–2303. https://doi.org/10.1093/cercor/bhq069 - PubMed
  57. Miao S, Chen R, Ye J, Tan GH, Li S, Zhang J, Jiang YH, Xiong ZQ (2013) The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons. J Neurosci 33(1):327–333. https://doi.org/10.1523/jneurosci.2509-12.2013 - PubMed
  58. Murray G, McKenzie K, Murray A, Whelan K, Cossar J, Murray K, Scotland J (2019) The impact of contextual information on the emotion recognition of children with an intellectual disability. J Appl Res Intellect Disabil 32(1):152–158. https://doi.org/10.1111/jar.12517 - PubMed
  59. Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214. https://doi.org/10.1038/nn1826 - PubMed
  60. Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, Vronskaya S, Buzsáki G, Siegelbaum SA, Kandel A, Morozov A (2004) A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119:719–732. https://doi.org/10.1016/j.cell.2004.11.020 - PubMed
  61. Palmer LM (2014) Dendritic integration in pyramidal neurons during network activity and disease. Brain Res Bull 103:2–10. https://doi.org/10.1016/j.brainresbull.2013.09.010 - PubMed
  62. Palmer L, Murayama M, Larkum M (2012) Inhibitory regulation of dendritic activity in vivo. Front Neural Circuits. https://doi.org/10.3389/fncir.2012.00026 - PubMed
  63. Pérez-Cremades D, Hernández S, Blasco-Ibáñez JM, Crespo C, Nacher J, Varea E (2010) Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down’s syndrome. J Neural Transm (Vienna) 117(4):445–455. https://doi.org/10.1007/s00702-010-0376-9 - PubMed
  64. Perez-Cruz C, Nolte MW, van Gaalen MM, Rustay NR, Termont A, Tanghe A, Kirchhoff F, Ebert U (2011) Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer’s disease. J Neurosci 31(10):3926–3934. https://doi.org/10.1523/jneurosci.6142-10.2011 - PubMed
  65. Phillips WA (2017) Cognitive functions of intracellular mechanisms for contextual amplification. Brain Cogn 112:39–53. https://doi.org/10.1016/j.bandc.2015.09.005 - PubMed
  66. Phillips WA, Larkum ME, Harley CW, Silverstein SM (2016) The effects of arousal on apical amplification and conscious state. Neurosci Conscious 1:niw015–niw015. https://doi.org/10.1093/nc/niw015 - PubMed
  67. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503(7477):521–524. https://doi.org/10.1038/nature12676 - PubMed
  68. Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM (2021) Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 141(2):139–158. https://doi.org/10.1007/s00401-020-02244-5 - PubMed
  69. Ramaswamy S, Markram H (2015) Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00233 - PubMed
  70. Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94(1):141–188. https://doi.org/10.1152/physrev.00012.2013 - PubMed
  71. Sceniak MP, Fedder KN, Wang Q, Droubi S, Babcock K, Patwardhan S, Wright-Zornes J, Pham L, Sabo SL (2019) An autism-associated mutation in GluN2B prevents NMDA receptor trafficking and interferes with dendrite growth. J Cell Sci 132:jcs232892 - PubMed
  72. Shepherd GMG (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14(4):278–291. https://doi.org/10.1038/nrn3469 - PubMed
  73. Sherman SL, Allen EG, Bean LH, Freeman SB (2007) Epidemiology of Down syndrome. Ment Retard Dev Disabil Res Rev 13(3):221–227. https://doi.org/10.1002/mrdd.20157 - PubMed
  74. Shin W, Kim K, Serraz B, Cho YS, Kim D, Kang M, Lee E, Lee H, Bae YC, Paoletti P, Kim E (2020) Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice. PLoS Biol 18:e3000717. https://doi.org/10.1371/journal.pbio.3000717 - PubMed
  75. Shogren KA, Turnbull HR (2010) Public policy and outcomes for persons with intellectual disability: extending and expanding the public policy framework of AAIDD’s 11th edition of intellectual disability: definition, classification, and systems of support. Intellect Dev Disabil 48(5):375–386. https://doi.org/10.1352/1934-9556-48.5.375 - PubMed
  76. Spratt PWE, Ben-Shalom R, Keeshen CM, Burke KJ Jr, Clarkson RL, Sanders SJ, Bender KJ (2019) The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron 103(4):673-685.e675. https://doi.org/10.1016/j.neuron.2019.05.037 - PubMed
  77. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221. https://doi.org/10.1038/nrn2286 - PubMed
  78. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72. https://doi.org/10.1038/367069a0 - PubMed
  79. Suetsugu M, Mehraein P (1980) Spine distribution along the apical dendrites of the pyramidal neurons in Down’s syndrome: a quantitative golgi study. Acta Neuropathol 50(3):207–210. https://doi.org/10.1007/bf00688755 - PubMed
  80. Takahashi N, Ebner C, Sigl-Glöckner J, Moberg S, Nierwetberg S, Larkum ME (2020) Active dendritic currents gate descending cortical outputs in perception. Nat Neurosci 23(10):1277–1285. https://doi.org/10.1038/s41593-020-0677-8 - PubMed
  81. Thomazeau A, Lassalle O, Iafrati J, Souchet B, Guedj F, Janel N, Chavis P, Delabar J, Manzoni OJ (2014) Prefrontal deficits in a murine model overexpressing the down syndrome candidate gene dyrk1a. J Neurosci 34(4):1138–1147. https://doi.org/10.1523/jneurosci.2852-13.2014 - PubMed
  82. Thomson A (2010) Neocortical layer 6: a review. Front Neuroanat. https://doi.org/10.3389/fnana.2010.00013 - PubMed
  83. Thomson AM, Morris OT (2002) Selectivity in the inter-laminar connections made by neocortical neurones. J Neurocytol 31(3):239–246. https://doi.org/10.1023/A:1024117908539 - PubMed
  84. Valenzuela CF, Morton RA, Diaz MR, Topper L (2012) Does moderate drinking harm the fetal brain? Insights from animal models. Trends Neurosci 35(5):284–292. https://doi.org/10.1016/j.tins.2012.01.006 - PubMed
  85. Vieira MM, Jeong J, Roche KW (2021) The role of NMDA receptor and neuroligin rare variants in synaptic dysfunction underlying neurodevelopmental disorders. Curr Opin Neurobiol 69:93–104. https://doi.org/10.1016/j.conb.2021.03.001 - PubMed
  86. Whitcher LT, Klintsova AY (2008) Postnatal binge-like alcohol exposure reduces spine density without affecting dendritic morphology in rat mPFC. Synapse 62(8):566–573. https://doi.org/10.1002/syn.20532 - PubMed
  87. Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71(5):772–781. https://doi.org/10.1016/j.neuron.2011.07.024 - PubMed

Publication Types