Display options
Share it on

Clin Chem Lab Med. 2021 Jul 01;59(10):1699-1708. doi: 10.1515/cclm-2021-0538. Print 2021 Sep 27.

Pro-coagulant imbalance in patients with community acquired pneumonia assessed on admission and one month after hospital discharge.

Clinical chemistry and laboratory medicine

Armando Tripodi, Simona C Rossi, Marigrazia Clerici, Giuliana Merati, Erica Scalambrino, Ilaria Mancini, Luciano Baronciani, Marco Boscarino, Valter Monzani, Flora Peyvandi

Affiliations

  1. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan and Fondazione Luigi Villa, Milan, Italy.
  2. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Divisione Medicina Generale Alta Intensità di Cura, Milan, Italy.
  3. Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.

PMID: 34192831 DOI: 10.1515/cclm-2021-0538

Abstract

OBJECTIVES: Patients hospitalized because of community-acquired-pneumonia (CAP) are at risk of cardiovascular diseases. Although plasma procoagulant imbalance play a role, mechanisms are not completely understood. We aimed to investigate whether there is a measurable state of procoagulant imbalance following inflammation determined by CAP.

METHODS: We analyzed blood from 51 CAP patients at admission and 51 healthy subjects (HS) for (i) pro and anticoagulants, (ii) thrombin generation (TG) with or without thrombomodulin (TM), which is the physiologic activator of the protein C anticoagulant pathway and(iii) by assessing the ratio between von Willebrand-factor (VWF) and its protease ADAMTS13. Thirty patients were re-analyzed one month after discharge when CAP was resolved.

RESULTS: Median levels of TG parameters, including the endogenous thrombin potential (ETP), the ETP-TM-ratio (with/without TM), peak-thrombin and velocity index were higher in patients at baseline than HS. In particular, the median (IQR) ETP-TM-ratio in patients vs. HS was 0.88 (0.83-0.91) vs. 0.63 (0.48-0.71), p<0.001. Factor (F)VIII, a potent procoagulant involved in TG was higher in patients at baseline than HS [195 U/dL (100-388) vs. 127(108-145)], p<0.001]. The ratio of VWF/ADAMTS13 was higher at baseline than HS. Cumulatively, the findings indicate a state of pro-coagulant imbalance, which (although reduced), remained high [i.e., ETP-TM-ratio, 0.80 (0.74-0.84); FVIII, 152 U/dL (122-190)] one month after discharge when the infection was resolved.

CONCLUSIONS: Patients with CAP possess a state of pro-coagulant imbalance, which remains substantially high, even when the infection is resolved. The findings suggest CAP patients as candidates for antithrombotic prophylaxis even after the resolution of infection. Clinical trials are warranted to assess the benefit/risk ratio of prophylaxis extension.

© 2021 Walter de Gruyter GmbH, Berlin/Boston.

Keywords: ADAMTS13; endothelial cells; factor VIII; respiratory infections; thrombin generation; von Willebrand factor

References

  1. Wanner, N, Asosingh, K. Immunophenotyping of circulating endothelial cells and endothelial microparticles. Methods Mol Biol 2019;2032:203–11. https://doi.org/10.1007/978-1-4939-9650-6_12. - PubMed
  2. Vasina, E, Heemskerk, JW, Weber, C, Koenen, RR. Platelets and platelet-derived microparticles in vascular inflammatory disease. Inflamm Allergy Drug Targets 2010;9:346–54. https://doi.org/10.2174/187152810793938008. - PubMed
  3. Zwicker, JI, Trenor, CC3rd, Furie, BC, Furie, B. Tissue factor-bearing microparticles and thrombus formation. Arterioscler Thromb Vasc Biol 2011;31:728–33. https://doi.org/10.1161/atvbaha.109.200964. - PubMed
  4. Ravindran, M, Khan, MA, Palaniyar, N. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules 2019;9:365. https://doi.org/10.3390/biom9080365. - PubMed
  5. Twaddell, SH, Baines, KJ, Grainge, C, Gibson, PG. The emerging role of neutrophil extracellular traps in respiratory disease. Chest 2019;156:774–82. https://doi.org/10.1016/j.chest.2019.06.012. - PubMed
  6. Ammollo, CT, Semeraro, F, Xu, J, Esmon, NL, Esmon, CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011;9:1795–803. https://doi.org/10.1111/j.1538-7836.2011.04422.x. - PubMed
  7. von Brühl, ML, Stark, K, Steinhart, A, Chandraratne, S, Konrad, I, Lorenz, M, et al.. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012;209:819–35. https://doi.org/10.1084/jem.20112322. - PubMed
  8. Diaz, JA, Fuchs, TA, Jackson, TO, Kremer Hovinga, JA, Lämmle, B, Henke, PK, et al.. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 2013;1:341–8. https://doi.org/10.1016/j.jvsv.2012.12.002. - PubMed
  9. van Montfoort, ML, Stephan, F, Lauw, MN, Hutten, BA, Van Mierlo, GJ, Solati, S, et al.. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 2013;33:147–51. https://doi.org/10.1161/atvbaha.112.300498. - PubMed
  10. Fuchs, TA, Kremer Hovinga, JA, Schatzberg, D, Wagner, DD, Lämmle, B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012;120:1157–64. https://doi.org/10.1182/blood-2012-02-412197. - PubMed
  11. Borissoff, JI, Joosen, IA, Versteylen, MO, Brill, A, Fuchs, TA, Savchenko, AS, et al.. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013;33:2032–40. https://doi.org/10.1161/atvbaha.113.301627. - PubMed
  12. Lip, GY, Blann, A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders?. Cardiovasc Res 1997;34:255–65. https://doi.org/10.1016/s0008-6363(97)00039-4. - PubMed
  13. Tripodi, A, Chantarangkul, V, Mannucci, PM. Acquired coagulation disorders: revisited using global coagulation/anticoagulation testing. Br J Haematol 2009;147:77–82. https://doi.org/10.1111/j.1365-2141.2009.07833.x. - PubMed
  14. Smeeth, L, Cook, C, Thomas, S, Hall, AJ, Hubbard, R, Vallance, P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet 2006;367:1075–9. https://doi.org/10.1016/s0140-6736(06)68474-2. - PubMed
  15. Lindahl, B, Toss, H, Siegbahn, A, Venge, P, Wallentin, L. Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. N Engl J Med 2000;343:1139–47. https://doi.org/10.1056/nejm200010193431602. - PubMed
  16. Danesh, J, Wheeler, JG, Hirschfield, GM, Eda, S, Eiriksdottir, G, Rumley, A, et al.. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350:1387–97. https://doi.org/10.1056/nejmoa032804. - PubMed
  17. Keaney, JFJr, Vita, JA. The value of inflammation for predicting unstable angina. N Engl J Med 2002;347:55–7. https://doi.org/10.1056/nejm200207043470112. - PubMed
  18. Levy, ML, Le Jeune, I, Woodhead, MA, Macfarlaned, JT, Lim, WS. British Thoracic Society community acquired pneumonia in Adults guideline Group. Primary care summary of the British Thoracic Society Guidelines for the management of community acquired pneumonia in adults: 2009 update. Endorsed by the Royal College of General practitioners and the primary Care respiratory Society UK. Prim Care Respir J 2010;19:21–7. https://doi.org/10.4104/pcrj.2010.00014. - PubMed
  19. Franquet, T. Imaging of community-acquired pneumonia. J Thorac Imag 2018;33:282–94. https://doi.org/10.1097/rti.0000000000000347. - PubMed
  20. Frezzato, M, Tosetto, A, Rodeghiero, F. Validated questionnaire for the identification of previous personal or familial venous thromboembolism. Am J Epidemiol 1996;143:1257–65. https://doi.org/10.1093/oxfordjournals.aje.a008713. - PubMed
  21. Hemker, HC, Giesen, P, Al Dieri, R, Regnault, V, de Smedt, E, Wagenvoord, R, et al.. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003;33:4–15. https://doi.org/10.1159/000071636. - PubMed
  22. Chantarangkul, V, Clerici, M, Bressi, C, Giesen, PL, Tripodi, A. Thrombin generation assessed as endogenous thrombin potential in patients with hyper- or hypo-coagulability. Effects of phospholipids, tissue factor and residual platelets on the measurement performed in platelet-poor and platelet-rich plasma. Haematologica 2003;88:547–54. - PubMed
  23. Tripodi, A. Detection of procoagulant imbalance. Modified endogenous thrombin potential with results expressed as ratio of values with-to-without thrombomodulin. Thromb Haemost 2017;117:830–6. https://doi.org/10.1160/th16-10-0806. - PubMed
  24. Lotta, LA, Valsecchi, C, Pontiggia, S, Mancini, I, Cannavò, A, Artoni, A, et al.. Measurement and prevalence of circulating ADAMTS13-specific immune complexes in autoimmune thrombotic thrombocytopenic purpura. J Thromb Haemost 2014;12:329–36. https://doi.org/10.1111/jth.12494. - PubMed
  25. Fernandez, MM, Hogue, S, Preblick, R, Kwong, WJ. Review of the cost of venous thromboembolism. Clinicoecon Outcomes Res 2015;7:451–62. https://doi.org/10.2147/ceor.s85635. - PubMed
  26. Silverstein, MD, Heit, JA, Mohr, DN, Petterson, TM, O’Fallon, WM, Melton, LJ3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med 1998;158:585–93. https://doi.org/10.1001/archinte.158.6.585. - PubMed
  27. Levi, M, van der Poll, T. Coagulation and sepsis. Thromb Res 2017;149:38–44. https://doi.org/10.1016/j.thromres.2016.11.007. - PubMed
  28. Jokinen, C, Heiskanen, L, Juvonen, H, Kallinen, S, Karkola, K, Korppi, M, et al.. Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 1993;137:977–88. https://doi.org/10.1093/oxfordjournals.aje.a116770. - PubMed
  29. Hemker, HC, Giesen, P, AlDieri, R, Regnault, V, de Smed, E, Wagenvoord, R, et al.. The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb 2002;32:249–53. https://doi.org/10.1159/000073575. - PubMed
  30. Dahlback, B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol 2004;79:109–16. https://doi.org/10.1532/ijh97.03149. - PubMed
  31. Ruggeri, ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 2003;1:1335–42. https://doi.org/10.1046/j.1538-7836.2003.00260.x. - PubMed
  32. Scully, M, Cataland, S, Coppo, P, de la Rubia, J, Friedman, KD, Kremer Hovinga, J, et al.. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 2017;15:312–22. https://doi.org/10.1111/jth.13571. - PubMed
  33. Sadler, JE. Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017;130:1181–8. https://doi.org/10.1182/blood-2017-04-636431. - PubMed
  34. Sonneveld, MAH, de Maat, MPM, Portegies, MLP, Kavousi, M, Hofman, A, Turecek, PL, et al.. Low ADAMTS13 activity is associated with an increased risk of ischemic stroke. Blood 2015;126:2739–46. https://doi.org/10.1182/blood-2015-05-643338. - PubMed
  35. Maino, A, Siegerink, B, Lotta, LA, Crawley, JT, le Cessie, S, Leebeek, FW, et al.. Plasma ADAMTS-13 levels and the risk of myocardial infarction: an individual patient data meta-analysis. J Thromb Haemost 2015;13:1396–404. https://doi.org/10.1111/jth.13032. - PubMed
  36. Ono, T, Mimuro, J, Madoiwa, S, Soejima, K, Kashiwakura, Y, Ishiwata, A, et al.. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood 2006;107:528–34. https://doi.org/10.1182/blood-2005-03-1087. - PubMed
  37. Martin, K, Borgel, D, Lerolle, N, Feys, HB, Trinquart, L, Vanhoorelbeke, K, et al.. Decreased ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med 2007;35:2375–82. https://doi.org/10.1097/01.ccm.0000284508.05247.b3. - PubMed
  38. Kremer Hovinga, JA, Zeerleder, S, Kessler, P, Romani de Wit, T, van Mourik, JA, Hack, CE, et al.. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost 2007;5:2284–90. https://doi.org/10.1111/j.1538-7836.2007.02743.x. - PubMed
  39. Bergh, C, Fall, K, Udumyan, R, Sjöqvist, H, Fröbert, O, Montgomery, S. Severe infections and subsequent delayed cardiovascular disease. Eur J Prev Cardiol 2017;24:1958–66. https://doi.org/10.1177/2047487317724009. - PubMed
  40. Schünemann, HJ, Cushman, M, Burnett, AE, Kahn, SR, Beyer-Westendorf, J, Spencer, FA, et al.. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and non-hospitalized medical patients. Blood Adv 2018;2:3198–225. https://doi.org/10.1182/bloodadvances.2018022954. - PubMed
  41. Peyvandi, F, Artoni, A, Novembrino, C, Aliberti, S, Panigada, M, Boscarino, M, et al.. Hemostatic alterations in COVID-19. Haematologica 2021;106:1472–75. https://doi.org/10.3324/haematol.2020.262634. - PubMed
  42. Mancini, I, Baronciani, L, Artoni, A, Colpani, P, Biganzoli, M, Cozzi, G, et al.. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost 2021;19:513–21. https://doi.org/10.1111/jth.15191. - PubMed
  43. De Cristofaro, R, Liuzzo, G, Sacco, M, Lancellotti, S, Pedicino, D, Andreotti, F. Marked von Willebrand factor and factor VIII elevations in severe acute respiratory syndrome coronavirus-2-positive, but not severe acute respiratory syndrome coronavirus-2-negative, pneumonia: a case-control study. Blood Coagul Fibrinolysis 2021;32:285–9. https://doi.org/10.1097/MBC.0000000000000998. - PubMed
  44. Tripodi, A, Legnani, C, Chantarangkul, V, Cosmi, B, Palareti, G, Mannucci, PM. High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thromb Haemost 2008;6:1327–33. https://doi.org/10.1111/j.1538-7836.2008.03018.x. - PubMed
  45. van Hylckama Vlieg, A, Baglin, CA, Luddington, R, MacDonald, S, Rosendaal, FR, Baglin, TP. The risk of a first and a recurrent venous thrombosis associated with an elevated D-dimer level and an elevated thrombin potential: results of the THE-VTE study. J Thromb Haemost 2015;13:1642–52. https://doi.org/10.1111/jth.13043. - PubMed
  46. Smid, M, Dielis, AW, Spronk, HM, Rumley, A, van Oerle, R, Woodward, M, et al.. Thrombin generation in the glasgow myocardial infarction study. PLoS One 2013;8:e66977. https://doi.org/10.1371/journal.pone.0066977. - PubMed
  47. van Paridon, PCS, Panova-Noeva, M, van Oerle, R, Schultz, A, Hermanns, IM, Prochaska, JH, et al.. Thrombin generation in cardiovascular disease and mortality: results from the Gutenberg Health Study. Haematologica 2020;105:2327–34. https://doi.org/10.3324/haematol.2019.221655. - PubMed

Publication Types